国家教育部博士点基金(20121401120015)
- 作品数:5 被引量:18H指数:3
- 相关作者:郭倩杨红菊韩建栋温静朱婷婷更多>>
- 相关机构:山西大学西安工程大学更多>>
- 发文基金:国家教育部博士点基金国家自然科学基金山西省自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 结合粗糙集与分层思想的彩色图像分割算法被引量:6
- 2015年
- 针对彩色图像分割算法中小目标区域容易错分割以及计算复杂度高的问题,提出一种基于HSI空间的结合粗糙集理论与分层思想的彩色图像分割方法。首先,由于彩色图像HSI空间的奇异点对应于RGB空间的灰色像素点,为了消除奇异点,在RGB空间寻找“灰色区域”进行分割与标记;然后,将图像转换到HSI颜色空间,在强度I分量上,考虑到空间邻域信息以及区域分布差异,设计了变阈值渐变性同质函数对原始直方图进行加权,将加权直方图和原始直方图分别作为粗糙集的上、下近似集,构造了新的粗糙度函数进行分割;其次,针对初分割得到的每个区域,在色调H分量上采用直方图阈值化完成细分割;最后,为了避免过分割,在RGB空间上进行区域合并。相比Mushrif等提出的粗糙集分割算法(MUSHRIF M M,RAY A K.Color image segmentation:rough-set theoretic approach.Pattern Recognition Letters,2008,29(4):483-493),该算法更容易分割出图像中的小目标区域,避免了因RGB三个分量的相关性造成的错误分割,算法运行速度提高了5~8倍。实验结果表明:该算法分割效果较好,具有一定的抗噪性与鲁棒性。
- 韩建栋朱婷婷李月香
- 关键词:彩色图像分割
- 噪声方差未知条件下的视频目标跟踪被引量:2
- 2015年
- 目的基于卡尔曼滤波的视频目标跟踪算法需要事先获得过程噪声和观测噪声方差,但在实际应用中,无法得知这两种噪声方差的准确值。此外,由于目标运动的随机性和视频场景中背景的复杂性,噪声方差也会随时间发生动态变化。如果设定的噪声方差不准确,跟踪精度会受影响,严重时会导致目标跟踪失败。考虑到上述问题,提出一种新的解决方法。方法将带遗忘因子的推广递推最小二乘法(EFRLS)运用到视频目标跟踪研究领域。在该算法中,无需使用噪声方差,首先利用Mean Shift算法获得目标位置的初步估计,再利用EFRLS算法估计下一帧目标的位置。结果该算法明显好于传统Mean Shift算法,并且与Kalman结合Mean Shift算法的跟踪性能相当。此外,在目标发生严重遮挡时,该算法优于Kalman结合Mean Shift算法,具有较好的跟踪性能。结论本文算法无需设置噪声参数,可以实现目标在发生严重遮挡和遮挡后目标重新出现的情况下的准确跟踪,提高了跟踪的鲁棒性,具有一定的工程使用价值。
- 陈金广任冰青马丽丽温静
- 关键词:视频目标跟踪卡尔曼滤波目标遮挡
- 基于新的空间关系特征的图像检索方法被引量:6
- 2016年
- 图像与图像之间没有清晰的空间结构,这样就不能有效利用图像间空间结构上的相关性信息,针对此问题提出一种基于新的空间关系特征的图像检索方法。首先,提取待查询图像在内的全部图像的特征向量。然后,计算特征向量每两个之间的相似性,形成相似性矩阵。将相似性矩阵的列集合作为新特征向量,命名为新的空间关系特征向量,从而将原来的特征向量映射到一个欧氏空间上。最后,在新特征空间上计算相似性,特征向量之间的相似性问题就转化为新的空间关系特征向量之间的相似性问题。在新特征空间上,图像与图像之间的空间结构变得清晰了,有利于图像检索准确度的提高。在Corel数据库上进行实验,所提方法在平均检索查准率、查全率-查准率和可视化评价指标上都优于基于颜色直方图的图像检索方法。结果表明,基于新的空间关系特征的图像检索方法有效利用了图像间空间结构上的相关性信息,具有更好的检索效果。
- 郭倩杨红菊梁新彦
- 关键词:空间结构特征向量图像检索
- 基于多核学习的静态图像人体行为识别方法被引量:4
- 2016年
- 提出一种基于广义性多核学习的静态图像人体行为识别方法。从图像中提取基于边缘的梯度方向直方图和基于稠密采样的尺度不变特征描述子,并使用空间金字塔模型加入粗略空间信息;运用直方图内交核函数计算金字塔模型各层核矩阵,通过广义性多核学习方法求解各个核矩阵权重,以线性组合方式得到最优核矩阵;最后利用多核学习决策函数进行行为识别。Willow-actions数据集实验结果表明,本文方法比其他几种方法更加有效。
- 杨红菊冯进丽郭倩
- 结合PCA与HEIV的椭圆目标检测算法
- 2014年
- 提出结合主元变换与异方差变量含误差模型的椭圆识别与定位方法。根据椭圆长轴对应于椭圆主元方向的特点,利用主元变换法将目标边缘数据变换到主元坐标系,给出新的椭圆轮廓度误差评定方法,将变换后数据点集的椭圆轮廓度误差作为椭圆识别的依据,采用基于异方差变量含误差模型的拟合算法获取椭圆的中心坐标。该方法将任意椭圆转化为标准型椭圆,简化了识别过程,考虑到椭圆数据点的异方差特性,提高了椭圆的定位精度,在噪声方差为0.05情况下,定位精度小于0.04 pixel。
- 韩建栋温静
- 关键词:机器视觉主元分析