The two-level penalty mixed finite element method for the stationary Navier-Stokes equations based on Taylor-Hood element is considered in this paper. Two algorithms are proposed and analyzed. Moreover, the optimal stability analysis and error estimate for these two algorithms are provided. Finally, the numerical tests confirm the theoretical results of the presented algorithms.
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second- order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P2 conforming elements is used to the spatial discretization of the problem and the Crank-Nieolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank- Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.