Based on the temperature data from the China Meteorological Administration, NCEP-NCAR reanalysis data, and the TOMS Aerosol Index (AI), we analyze the variations in the summertime diurnal temperature range (DTR) and temperature maxima in the middle and lower reaches of the Yangtze River (MLRYR) in China. The possible relationships between the direct warming effect of the absorbing aerosol and temperature variations are further investigated, although with some uncertainties. It is found that the summertime DTR exhibits a decreasing trend over the most recent 50 years, along with a slight increasing tendency since the 1980s. The trend of the maximum temperature is in agreement with those of the DTR and the absorbing aerosols. To investigate the causes of the large anomalies in the temperature maxima, composite analyses of the circulation anomalies are performed. When anomalous AI and anomalous maximum temperature over the MLRYR have the same sign, an anomalous circulation with a quasi-barotropic structure occurs there. This anomalous circulation is modulated by the Rossby wave energy propagations from the regions northwest of the MLRYR and influences the northwestern Pacific subtropical high over the MLRYR. In combination with aerosols, the anomalous circulation may increase the maximum temperature in this region. Conversely, when the anomalous AI and anomalous maximum temperature in the MLRYR have opposite signs, the anomalous circulation is not equivalently barotropic, which possibly offsets the warming effect of aerosols on the maximum temperature changes in this region. These results are helpful for a better understanding of the DTR changes and the occurrences of temperature extremes in the MLRYR region during boreal summer.
The relationships of variations of sea surface temperature anomalies (SSTA) in the South Pacificwith ENSO and Southern Hemisphere Annular Mode (SAM) are examined in the present article byemploying the NCEP-NCAR reanalysis from 1951 to 2006. Two principal modes of South Pacific SSTA areobtained using the EOF (Empirical Orthogonal Function) analysis for austral winter (June, July and August).Our results suggest that EOF1 is closely related with ENSO and EOF2 links to SAM. The EOF1 varieslargely on an interannual and EOF2 on a decadal scale. The time series of coefficients of EOF1 is highlycorrelated simultaneously with Nino3 index. However, the time series of coefficients of EOF2 issignificantly correlated with the March-April-May mean SAM index. Both the EOF1 and EOF2 are found insignificant correlation to summer precipitation over China. With higher-than-normal SSTs in the easternSouth Pacific and simultaneously lower SSTs in the western South Pacific in June-July-August, thesummertime rainfall is found to be less than normal in northern China. As displayed in EOF2 of SSTA, inyears with lower-than-normal SSTs in mid-latitude southern and equatorial eastern Pacific andhigher-than-normal SSTs in the equatorial middle Pacific in March-April-May, the summer precipitation inAugust tends to be more than normal in regions south of Yangtze River.