We applied the reduced graphene oxide/multi-walled carbon nanotubes/nickel oxide(RGO/MWCNTs/Ni O)nanocomposite as the counter electrode(CE) in dye-sensitized solar cells(DSSCs) on fluorine-doped tin oxide substrates by blade doctor method. Power conversion efficiency(PCE) of 8.13 % was achieved for this DSSCs device, which is higher than that of DSSCs devices using Ni O, RGO, and RGO/Ni O-CE(PCE = 2.71 %, PCE = 6.77 % and PCE = 7.63 %). Also, the fill factor of the DSSCs devices using the RGO/MWCNTs/Ni O-CE was better than that of other CEs. The electron transfer measurement of cyclic voltammetry and electrochemical impedance spectroscopy showed that RGO/MWCNTs/Ni O film could provide fast electron transfer between the CE and the electrolyte, and high electrocatalytic activity for the reduction of triiodide in a CE based on RGO/MWCNTs/Ni O in a DSSC.
The mechanical behavior of CuO nanowires (NWs) was investigated by in situ transmission electron microscopy. During compression, the NWs exhibited high bending capabilities associated with high mechanical stress. Interestingly, anelasticity was consistently observed after stress release. Further investigations indicate that the anelasticity is intrinsic to the CuO NWs, although electron- beam irradiation was proved capable of accelerating the shape recovery. A mechanism based on the cooperative motion of twin-associated atoms is proposed to account for this phenomenon. The results provide insight into the mechanical properties of CuO NWs, which are promising materials for nanoscale damping systems.
Huaping Sheng He Zheng Fan Cao Shujing Wu Lei Li Chun Liu Dongshan Zhao Jianbo Wang
Atomic-scale oxidation dynamics of Cu2O nanocrystallines (NCs) are directly observed by in situ high-resolution transmission electron microscopy. A two-stage oxidation process is observed: (1)The initial oxidation stage is dominated by the dislocation-mediated oxidation behavior of Cu2O NCs via solid-solid transformations, leading to the formation of a new intermediate CuOx phase. The possible crystal structure of the CuOx phase is discussed. (2) Subsequently, CuOx is transformed into CuO by layer-by-layer oxidation. These results will help in understanding the oxidation mechanisms of copper oxides and pave the way for improving their structural diversity and exploiting their potential industrial applications.
Organolead trihalide perovskite materials have been attracting increasing attention due to their promising role in solid solar cells. Several advantages make them potential candidates for optoelectronics:(1) solution- or/and vapor-processed preparation at low temperature;(2) tunable optical bandgap, wide absorption spectrum but narrow photoluminescence peaks;(3) long car-rier life time, large diffusion length and high charge mobility;(4) various nanostructures via tuning capping agents and sol-vents. In this review, we summarize recent attempts toward efficient LEDs based on organolead trihalide perovskite materials. The strategies of materials science, device design and interface engineering are highlighted. Recent development and future perspectives are summarized for practical perovskite light technologies.
Ming PengWen WenSi ChenBuxin ChenKai YanHsienwei HuBin DongXue GaoXiao YuXiaoming JiangDechun Zou