Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive.
In order to reveal the mechanics of composite regeneration by coupling cerium-based additive and microwave for a diesel particulate filter, a composite regeneration model by coupling cerium-based additive and microwave for a diesel particulate filter was established based on field synergy theory. Performance evaluation on field synergy and composite regeneration of the diesel particulate filter was conducted by using the vortex crushing combustion and field synergy mathematical models. The results show that the peak temperature of the particulate filter body reaches 1180-1190 K when the regeneration time is 175 s, and there are optimal coordination degree between the velocity vector and temperature gradient of the filter body and the maximum ratio0.56-0.60 of the best burning regeneration region is obtained. Accordingly, the largest regeneration combustion rate inside the particulate filter body and the highest regeneration efficiency at the moment are achieved.