A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDX), ultraviolet-visible diffuse reflection(UV-Vis), X-ray photoelectron spectroscopy(XPS) and photoluminescence(PL) measurements. The composite structures consisted of Cd1-xZnxS nanoparticles evenly distributed on the surface of K2La2Ti3O10. The absorption edge of K2La2Ti3O10 shifted to the visible light region upon introduction of the Cd1-xZnxS nanoparticles. The photocatalytic activities of the catalysts were evaluated by hydrogen production under visible light irradiation. The prepared Cd0.8Zn0.2S(30wt%)/K2La2Ti3O10 exhibited higher photocatalytic activity, evolving 6.92 mmol/g H2 under visible light irradiation for 3 h. The promoted photocatalytic activity of the composites was attributed to the synergistic effect between Cd1-xZnxS and K2La2Ti3O10, which resulted in enhanced separation of photogenerated electrons and holes.
We put forward a new approach for the synthesis of Ag@AgCl plasmonic photocatalyst via a hydrothermal-deposition-photoreduction method. The cetylmethylammonium chloride (CTAC) was used alone as both a source of reactants and surfactant. The structure of the prepared photocatalyst was determined by XRD, SEM, EDX and UV-Vis spectroscoscopy. The photocatalytic properties were investigated by degradation of an organic pollutant, Rhodamine B, under visible light irradiation. The results reveal that the experimental conditions have a great effect on the morphology of Ag@AgCl crystals. Ag@AgC1 crystal is cubic and the Ag@AgCl sample which is photoreduced for 40 min exhibits the highest photoactivity, and 80.6 % RhB is degraded after irradiation for 2 hours using this catalyst. The high photocatalytic activity observed is attributed to the surface plasmon resonance effect ofAg nanoparticles.