A novel algorithm is proposed to resolve the defects in the traditional linear frequency modulation(LFM)jamming suppression algorithm in the fractional Fourier transform(FRFT)domain.The traditional LFM jamming suppression algorithm in the FRFT domain has some defects.For example,the exact threshold is difficult to set and both the signal-to-noise ratio(SNR)loss and spectrum leakage are serious in strong jamming-to-signal ratio(JSR)situations.Windowing,overlapping and inverse windowing techniques are used in the FRFT domain to reduce the spectrum leakage and the SNR loss.Under the condition that only the direct sequence spread spectrum(DSSS)signal and white Gaussian noise are present,the amplitude of the received signal after FRFT is assumed to be Rayleigh distributed.Based on the distribution characteristic,hypothesis testing is used to suppress the jamming spectrum using the algorithm.Simulation results show that the performance of proposed algorithm is better than that of the conventional algorithms,especially in a strong jamming and multi component LFM jamming environment.
A novel subspace projection anti-jamming algorithm based on spatial blind search is proposed,which uses multiple single-constrained subspace projection parallel filters.If the direction of arrival(DOA)of a satellite signal is unknown,the traditional subspace projection anti-jamming algorithm cannot form the correct beam pointing.To overcome the problem of the traditional subspace projection algorithm,multiple single-constrained subspace projection parallel filters are used.Every single-constrained anti-jamming subspace projection algorithm obtains the optimal weight vector by searching the DOA of the satellite signal and uses the output of cross correlation as a decision criterion.Test results show that the algorithm can suppress the jamming effectively,and generate high gain toward the desired signal.The research provides a new idea for the engineering implementation of a multi-beam anti-jamming algorithm based on subspace projection.