Since polyvinyl alcohol (PVA) as a sizing agent is not environmental friendly, it' s imperative to use less or even without PVA in the warp sizing. A set of sizing formulas with the same solid containing rate and different proportion were designed. After sizing practice of pure polyester and polyester/cottan yarns with atmospheric pressure plasma treatment by the set of sizing formulas, sizing quality was compared. The results indicate that strength enhancement rate, elongation reduction rate, and abrasion resistance of pure polyester and polyester/cotton sized yarn are significantly improved by atmospheric pressure plasma treatment. Meanwhile, PVA can be used less, or replaced by acrylic acid size.
The hydrophobic films of TixOy-CmHn. deposited from mixture gases of titanium isopropoxide (TTIP) and oxygen by plasma enhanced chemical vapor deposition (PECVD) were investigated. The films were investigated by scanning electron microscope ( SEM ), transmission electron microscope ( TEM ), Fourier transform infrared spectrometer ( FTIR), X-Ray diffraction ( XRD ), element analysis ( EA ), ultraviolet visible spectrometer ( UV-Vis), and water contact angle (WCA). The results reveal that the surface of the films is formed by mierosized papillaes aggregated by inorganic and organic phases of complex nanoparticles with size from 50 nm to 200 nm when the discharge power is increased from 40 W to 150 W. All fdms demonstrate the strong broad of Ti-O-Ti stretching vibration at 400 -800cm-1, -CH bending vibration at 1 388 cm -1, and broadening -OH stretching vibration at 3 000-3500 cm-1 With the increase of the discharge power, the asdeposited film changes from amorphous to crystallization. The WCA of the film can be as high as 160°, indicating the hydrophobicity. The films show a similar ultraviolet absorption property as the bulk TiO2 film. The composition of the composition of film deposited at 150 W can be formulated as Tio.302-C1.5H3. Therefore, the composition formula of this hydrophobic film could be expressed as TiO2-C5H10O4.7. It is believed that the complex micro/nano structures of TiO2 and C5H10O4.7 residues are responsible for the observed hydrophobicity and the ultraviolet absorption property of the film.
A coaxial insulated-rod-to-cylinder underwater streamer discharge system capable of injecting plasma into a large volume of water was developed and employed to decolorize azo dye sunset yellow. The rod type anode was covered by an insulator tube with a wall thickness of 0.4 mm. A series of slits with a width of 20 μm to 80 μm and a length of about 4 mm were cut onto the wall of the insulator tube. Depending on the solution conductivity, a cylindrical discharge region with a length of 60 mm and a wall thickness of 5 mm to 11 mm forms in the reactor. The influence of the solution conductivity, pH and pulse frequency on the decoloration of sunset yellow was investigated. The results show that the solution conductivity has little effect, while the solution pH and the pulse frequency have significant influence on the decoloration rate of sunset yellow. The decoloration rate of sunset yellow is increased with the increase in pulse frequency. A lower pH in solution promotes the decoloration of sunset yellow while a higher pH inhibits it.