Characteristics of optical switching in a twin-core fibre coupler are numerically analysed under short pulse input by using supermode theory. The dynamic nonlinear coupled superlnode equations are derived, The numerical results show that the input pulse width determines the power transfer and the pulse temporal profile in the output ports. The optimal switching characteristics can be obtained by selecting an appropriate initial pulse width. In addition, the switching characteristic curves are insensitive to the input pulse shape for either fundamental soliton pulse or Gaussian pulse input, but sensitive to pulse sharpness. A reduced switching power and a sharper switching transition can be obtained by using the sharp super-Gaussian pulse.
Supercontinuum spectrum generation in a dispersion-flattened and decreasing fiber with two orthogonally polarized pulses was simulated and calculated. The research results indicated that the supercontinuum spectrum generated by two orthogonally polarized pulses is wider and flatter than that generated by single polarized pulse due to cross-phase modulation. The cross-phase modulation effect can enhance the supercontinuum spectrum generation. When the pump power of the input pulse is lower, the enhancement of supercontinuum spectrum generation by cross-phase modulation effect is more significant.
Based on the constant coefficients of Ginzburg-Landau equation that considers the influence of the doped fiber retarded time on the evolution of self-similar pulse,the parabolic asymptotic self-similar solutions were obtained by the symmetry reduc-tion algorithm. The parabolic asymptotic amplitude function,phase function,strict linear chirp function and the effective temporal pulse width of self-similar pulse are given in this paper. And these theoretical results are consistent with the numerical simulations.
Periodical polarization modulation scheme is proposed to suppress timing jitters induced by frequency fluctuations between two polarization components of solitons. In periodical polarization modulation scheme, the polarization states of the soliton are modulated to excite equally for suppressing timing jitters induced by two unequal polarization components in the soliton trapping. Moreover, polarization modulation can weaken the effect of random birefringence on the soliton pulses in each relay distance. The numerical result shows that the soliton timing jitters are suppressed by our proposed method.