您的位置: 专家智库 > >

国家自然科学基金(61005070)

作品数:2 被引量:44H指数:2
相关作者:李庆玲闫德立宋宇康轶非更多>>
相关机构:哈尔滨工业大学中国矿业大学(北京)北京交通大学更多>>
发文基金:国家自然科学基金中央高校基本科研业务费专项资金机器人技术与系统国家重点实验室开放基金更多>>
相关领域:自动化与计算机技术理学更多>>

文献类型

  • 2篇期刊文章
  • 1篇会议论文

领域

  • 3篇自动化与计算...
  • 1篇理学

主题

  • 2篇粒子滤波
  • 2篇滤波
  • 1篇地图构建
  • 1篇移动机器人
  • 1篇容积
  • 1篇同时定位与地...
  • 1篇平方根
  • 1篇机器人
  • 1篇积分
  • 1篇高斯
  • 1篇PARTIC...
  • 1篇ROBUST
  • 1篇SLAM算法
  • 1篇FAST
  • 1篇ITERAT...
  • 1篇MCL
  • 1篇MOBILE...
  • 1篇RAO
  • 1篇CUBATU...

机构

  • 2篇哈尔滨工业大...
  • 2篇北京交通大学
  • 1篇中国矿业大学
  • 1篇中国矿业大学...

作者

  • 2篇宋宇
  • 1篇康轶非
  • 1篇闫德立
  • 1篇李庆玲

传媒

  • 1篇自动化学报
  • 1篇Chines...

年份

  • 1篇2014
  • 1篇2012
  • 1篇2011
2 条 记 录,以下是 1-3
排序方式:
平方根容积Rao-Blackwillised粒子滤波SLAM算法被引量:42
2014年
面向大尺度环境中的移动机器人同时定位与地图构建(Simultaneous localization and mapping,SLAM)问题,提出平方根容积Rao-Blackwillised粒子滤波SLAM算法.算法主要特点在于:1)采用容积律计算SLAM中的非线性函数高斯权重积分,达到减小SLAM非线性模型线性化误差、提高SLAM精度的目的;2)在SLAM中直接传播误差协方差矩阵的平方根因子,避免了耗费时间的协方差矩阵分解与重构过程,提高了SLAM计算效率.通过仿真、实验将提出的SLAM算法与FastSLAM2.0、UFastSLAM两种算法进行对比,结果表明本文算法在SLAM性能上优于另两者.
宋宇李庆玲康轶非闫德立
关键词:同时定位与地图构建粒子滤波
Cubature MCL:基于Cubature粒子滤波的移动机器人蒙特卡洛定位算法
粒子滤波是移动机器人蒙特卡洛定位(Monte Carlo Localization,MCL)中的核心环节。本文针对传统SIR粒子滤波算法存在的粒子退化效应,利用Cubature卡尔曼滤波来精确设计粒子滤波器的提议分布,实...
李庆玲宋宇
关键词:移动机器人粒子滤波
文献传递
Robust Iterated Sigma Point FastSLAM Algorithm for Mobile Robot Simultaneous Localization and Mapping被引量:2
2011年
Simultaneous localization and mapping (SLAM) is a key technology for mobile robots operating under unknown environment. While FastSLAM algorithm is a popular solution to the SLAM problem, it suffers from two major drawbacks: one is particle set degeneracy due to lack of observation information in proposal distribution design of the particle filter; the other is errors accumulation caused by linearization of the nonlinear robot motion model and the nonlinear environment observation model. For the purpose of overcoming the above problems, a new iterated sigma point FastSLAM (ISP-FastSLAM) algorithm is proposed. The main contribution of the algorithm lies in the utilization of iterated sigma point Kalman filter (ISPKF), which minimizes statistical linearization error through Gaussian-Newton iteration, to design an optimal proposal distribution of the particle filter and to estimate the environment landmarks. On the basis of Rao-Blackwellized particle filter, the proposed ISP-FastSLAM algorithm is comprised by two main parts: in the first part, an iterated sigma point particle filter (ISPPF) to localize the robot is proposed, in which the proposal distribution is accurately estimated by the ISPKF; in the second part, a set of ISPKFs is used to estimate the environment landmarks. The simulation test of the proposed ISP-FastSLAM algorithm compared with FastSLAM2.0 algorithm and Unscented FastSLAM algorithm is carried out, and the performances of the three algorithms are compared. The simulation and comparing results show that the proposed ISP-FastSLAM outperforms other two algorithms both in accuracy and in robustness. The proposed algorithm provides reference for the optimization research of FastSLAM algorithm.
SONG YuSONG YongduanLI Qingling
共1页<1>
聚类工具0