The undulation and characteristics of the Lehmann discontinuity at the base of the Low Velocity Zone in the upper mantle are significant for understanding the coupling between the lithosphere and asthenosphere, and corresponding geodynamic processes. Vertical waveform data from six earthquakes with focal depths between 75 and 150 km and magnitudes Mb 5.0–6.0 since 2004 were collected from the short-period Hi-net array. Selected waveform data were processed for each event network pair using the Nth-root slant stack method to retrieve the SdP conversion phases from the possible 220 km(Lehmann) discontinuity. The conversion points related to the SdP phases show that there is a clear and flat velocity interface around 230 km, suggesting that there is a sinking of the Lehmann discontinuity beneath Tonga with no obvious undulation. The 230 km depth of the Lehmann discontinuity in this location could be explained by an hypothesis of transition in the deformation mechanism from dislocation creep to diffusion creep.