选取亚热带典型的常绿阔叶甜槠林为研究对象,从2011年4月至2013年6月进行模拟氮(N)沉降试验,以探讨甜槠林凋落物养分归还量对N沉降的响应。氮沉降水平分别为:对照(CK,0 kg N hm-2a-1),低氮(LN,50 kg N hm-2a-1),高氮(HN,100 kg N hm-2a-1),高氮+磷(HN+P,100 kg N hm-2a-1+50 kg P hm-2a-1),每个处理重复3次。在模拟氮沉降2 a后,于2012年7月开始收集各样地的凋落物样品,分析凋落物及其养分归还量。结果表明:不同处理凋落物量没有显著差异,表明氮沉降增加没有显著提高林分凋落物产量;不同处理落叶、落枝中N、P、K、Ca、Mg含量均无显著差异,表明氮沉降亦没有显著增加凋落物各养分含量;模拟氮沉降处理均增加了各养分元素年归还量,但不同元素对N沉降的响应不同。N、K和Mg年归还量与CK存在显著差异,而P和Ca年归还量与CK处理无显著差异。
Aims Road effects from maintenance and traffic have the potential to alter plant communities,but the exact relationships between these effects and changes in plant community composition have not often been studied in diverse environments.To determine the direction and level of community composition changes in saline environment due to road effects,we conducted a study along roads of different ages and in nearby non-road(i.e.natural)areas in the Yellow River Delta,China.Additionally,to potentially elucidate the mechanisms underlying the changes in the richness and composition of plant communities along roads,we evaluated physiochemical changes in soil of roadside and non-road areas.Methods Floristic and environmental data were collected along roadside of different ages and nearby non-road areas.To evaluate plant communities at each site,six 2 m 32 m quadrats were placed at 3-m intervals along roads and six quadrats were arranged randomly in non-road areas.To determine the difference in plant community composition betweenroadside andnon-road areas,wemeasuredspecies richness and the abundance of each species,examined species turnover and floristic dissimilarity between the two areas and positioned plant species and sites in an abstract multivariate space.Plant community(species richness,percentage of halophytes)and soil physicochemical properties(pH,salinity,moisture content,bulk density,nitrate and ammonium nitrogen concentration)were compared between roadside and non-road areas(young roadside vs.corresponding non-road areas,old roadside vs.corresponding non-road areas)by using t-tests.Classification and ordination techniques were used to examine the relationship between vegetation and related environmental variables in both roadside and non-road areas.Important Findings For both the young and old roadside areas,species richness in roadside areas was significantly higher than in non-road areas and high floristic dissimilarity values indicated that roadside and non-road areas differed greatly in community compositio
Freezing can increase the emissions of carbon dioxide (CO2) and nitrous oxide (N2O) and the release of labile car- bon (C) and nitrogen (N) pools into the soil. However, there is limited knowledge about how both emissions respond differ- ently to soil freezing and their relationships to soil properties. We evaluated the effect of intensity and duration of freezing on the emissions of CO2 and N2O, net N mineralization, microbial biomass, and extractable C and N pools in soils from a mature broadleaf and Korean pine mixed forest and an adjacent secondary white birch forest in northeastern China. These soils had different contents of microbial biomass and bulk density. Intact soil cores of 0-5 cm and 5-10 cm depth sampled from the two temperate forest floors were subjected to -8, -18, and -80℃ freezing treatments for a short (10 d) and long (145 d) duration, and then respectively incubated at 10~C for 21 d. Soil cores, incubated at 10℃ for 21 d without a pretreatment of freezing, served as control. Emissions of N20 and COz after thaw varied with forest type, soil depth, and freezing treatment. The differ- ence could be induced by the soil water-filled pore space (WFPS) during incubation and availability of substrates for N20 and CO2 production, which are released by freezing. A maximum N2O emission following thawing of frozen soils was observed at approximately 80% WFPS, whereas CO2 emission from soils after thaw significantly increased with increasing WFPS. The soil dissolved organic C just after freezing treatment and CO2 emission increased with increase of freezing duration, which paralleled with a decrease in soil microbial biomass C. The cumulative net N mineralization and net ammonification after freezing treatment as well as N2O emission were significantly affected by freezing temperature. The N2O emission was nega- tively correlated to soil pH and bulk density, but positively correlated to soil KzSO4-extractable NO3 -N content and net am- monification. The CO2 emission was pos
Altitude is a useful indicator to examine patterns of forest structure and species diversity in relation to environmental factors.In this study,the altitude patterns of forest stand structure and species diversity were analyzed across 20 plots in the Tianchi Nature Reserve,Northwest China.The results showed that mean stem height(Hm),maximum stem height(Hmax) and mean stem diameter at breast height(Dm) of Picea schrenkiana trees all decreased significantly with increasing altitude.Potential tree height(H*) decreased while stem taper increased significantly as altitude increased,suggesting remarkable altitudinal changes in biomass allocation between the diameter and height growth of Picea schrenkiana.Understory herbaceous richness increased significantly with increasing altitude,or with decreasing total basal area(TBA),Hm and stand volume(Volume).High light availability for understory herbs might account for the higher species richness at high altitude.Sorensen Index decreased significantly with the increase in altitude intervals,while the Cody Index demonstrated a converse pattern,suggesting greater differences in species composition with larger distances.