The IR absorption, visible excited normal Raman, and UV-excited near-resonant Raman (UVRR) spectra of 1,1'-binaphthyl-2,2'-diamine (BINAM) were measured and analyzed. Density functional theory calculations were carried out to investigate its vibrational frequencies, infrared absorption, normal Raman, and near-resonance Raman intensities. The observed Raman and IR bands of BINAM were assigned with respect to the local vibrations of substituted 2-naphthylamine. Several Raman bands of BINAM were found selectively enhanced in the UVRR in comparison with the normal Raman spectrum. Possible excited state geometry distortion was discussed based on the resonance Raman intensity analysis.
The Raman depolarization ratios of gaseous CO2 in the spectral range of 1240-1430 cm-I are determined with a sensitive photoacoustic Raman spectroscopy, and more accurate data compared to the literature results are presented. The precision of the obtained depolarization ratio is achieved by measuring and fitting the dependence of the PARS signal intensity on the cross angle between the polarizations of two incident laser beams.
The amide A band of protein is sensitive to the hydrogen bands of amide groups of proteins. However, it is hard to distinguish the amide A band of aqueous protein in situ directly, since it overlaps with O-H stretching vibration of water. In this work, we presented a new analytical method of Raman ratio spectrum, which can extract the amide A band of proteins in water. To obtain the Raman ratio spectrum, the Raman spectrum of aqueous protein was divided by that of pure water. A mathematical simulation was employed to examine whether Raman ratio spectrum is effective. Two kinds of protein, lysozyme and (^-chymotrypsin were employed. The amide A bands of them in water were extracted from Raman ratio spectra. Additionally, the process of thermal denaturation of lysozyme was detected from Raman ratio spectrum. These results demonstrated the Raman ratio spectra could be employed to study the amide A modes of proteins in water.