In large loop transient electromagnetic method(TEM),the late time apparent resistivity formula cannot truly reflect the geoelectric model,thus it needs to define the all-time apparent resistivity with the position information of measuring point.Utilizing very fast simulated annealing(VFSA) to fit the theoretical electromagnetic force(EMF) and measured EMF could obtain the all-time apparent resistivity of the measuring points in rectangular transmitting loop.The selective cope of initial model of VFSA could be confirmed by taking the late time apparent resistivity of transient electromagnetic method as the prior information.For verifying the correctness,the all-time apparent resistivities of the geoelectric models were calculated by VFSA and dichotomy,respectively.The results indicate that the relative differences of apparent resistivities calculated by these two methods are within 3%.The change of measuring point position has little influence on the tracing pattern of all-time apparent resistivity.The first branch of the curve of all-time apparent resistivity is close to the resistivity of the first layer medium and the last branch is close to the resistivity of the last layer medium,which proves the correctness of the arithmetics proposed.
The 2D data processing adopted by the high-density resistivity method regards the geological structures as two degrees, which makes the results of the 2D data inversion only an approximate interpretation;the accuracy and effect can not meet the precise requirement of the inversion. Two typical models of the geological bodies were designed, and forward calculation was carried out using finite element method. The forward-modeled profiles were obtained. 1% Gaussian random error was added in the forward models and then 2D and 3D inversions using a high-density resistivity method were undertaken to realistically simulate field data and analyze the sensitivity of the 2D and 3D inversion algorithms to noise. Contrast between the 2D and 3D inversion results of least squares inversion shows that two inversion results of high-density resistivity method all can basically reflect the spatial position of an anomalous body. However, the 3D inversion can more effectively eliminate the influence of interference from Gaussian random error and better reflect the distribution of resistivity in the anomalous bodies. Overall, the 3D inversion was better than 2D inversion in terms of embodying anomalous body positions, morphology and resistivity properties.
An element-free Galerkin method(EFGM) is used to solve the two-dimensional(2D) ground penetrating radar(GPR)modelling problems, due to its simple pre-processing, the absence of elements and high accuracy. Different from element-based numerical methods, this approach makes nodes free from the elemental restraint and avoids the explicit mesh discretization. First, we derived the boundary value problem for the 2D GPR simulation problems. Second, a penalty function approach and a boundary condition truncated method were used to enforce the essential and the absorbing boundary conditions, respectively. A three-layered GPR model was used to verify our element-free approach. The numerical solutions show that our solutions have an excellent agreement with solutions of a finite element method(FEM). Then, we used the EFGM to simulate one more complex model to show its capability and limitations. Simulation results show that one obvious advantage of EFGM is the absence of element mesh, which makes the method very flexible. Due to the use of MLS fitting, a key feature of EFM, is that both the dependent variable and its gradient are continuous and have high precision.