We present scheme I for solving one-dimensional fractional diffusion equation with variable coefficients based on the maximum modulus principle and two Grunwald approxima- tions. Scheme II is obtained by using classic Crank-Nicolson approximations in order to improve the time convergence. Schemes are proved to be unconditionally stable and second-order accuracy in spatial grid size for the problem with order of fractional derivative belonging to [(√17- 1)/2, 2] using the maximum modulus principle. A numerical example is given to confirm the theoretical analysis result.