The basic principles of target detection by forward acoustic scattering are presented.A direct blast suppression approach based on adaptive filtering(DBS-AF) is proposed to suppress the direct blast.The DBS-AF technique is extended to the linear frequency modulation(LFM) signal,where the envelope of the signal is regarded as a 'general waveform' and imported into the adaptive filter.Application of the DBS-AF method to the data collected from a lake trial yields an output detection curve,in which the direct blast is mapped to the background while the acoustic field aberration is represented by the peak value fluctuation.The inhibitory effect in single hydrophone is approximately- 5 dB,and is then enhanced by exploiting the mean value removal approach as a preprocessing technique.The direct blast is further suppressed to a level of-10 dB by making full use of multichannel receptions.The main factors affecting the algorithm performance are as follows:the fluctuation degree of the receptions during the weighting vector training period and the power ratio of the forward scattered wave to the direct blast when the target is present.
The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit(IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit(OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.
The climatology of evaporation ducts is important for shipborne electromagnetic system design and application. The evaporation duct climatology that is currently used for such applications was developed in the mid 1980s; this study presents efforts to improve it over the South China Sea (SCS) by using a state- of-the-art evaporation duct model and an improved meteorology dataset. This new climatology provides better evaporation duct height (EDH) data over the SCS, at a higher resolution of 0.312°×0.313°. A comparison between the new climatology and the old one is performed. The monthly average EDH in the new climatology is between 10 and 12 m over the SCS, higher than that in the old climatology. The spatiotemporal characteristics of the evaporation duct over the SCS in different months are analyzed in detail, based on the new climatology.