In this investigation,differential scanning calorimetry(DSC) and metallographic experiments were performed to study α→α +β phase transformation temperature in a Zr-1.0Sn-0.3Nb-0.3Fe alloy.The deconvolution and extrapolation methods to determine the α→α+β phase transformation temperature in DSC experiment were appropriate for the Zr alloy.Moreover,precise determination of α→α+β phase transformation temperature was carried out by back-scattered electron imaging(BSEI) and electron back-scattered diffraction(EBSD) characterization techniques.The α→α+β phase transformation temperature of the Zr-1.0Sn-0.3Nb-0.3 Fe alloy was determined to be 765-770°C.
Industry pure zirconium sheets with a strong c-axis fiber texture were rolled to different strains at 77 K to investigate the twinning behavior and deformation mechanism. The microstructure and texture of the rolled specimens were characterized by scanning electron microscopy (SEM) together with electron backscatter diffraction (EBSD) techniques. The results show that the {1022} (1123) compression twinning mode is the dominant deformation twin at low strains loaded along the c-axis, and the {1012} ( 10]- 1 ) tensile twinning generates as the second twin in {1022} ( 1123 ) twins. The selection of twinning modes is governed by Schmid factor (SF) due to the calculating of SF and the EBSD simulating of twinning distribution. The evolution of texture during rolling affected by twins with increase of the strain was explained.