In a four-level system of ultracold STRb atoms, through analytical and numerical calculations we propose an efficient scheme to achieve the enhanced four-wave mixing process and demonstrate its dynamical control by various parameters such as the travel distance z, probe detuning δ and the probe pulse width T. In particular, we find that the maximal intensity of the nonlinearly generated signal pulse can be about 80% of the initial input probe under the optimal condition. This greatly enhanced conversion efficiency occurs due to the constructive quantum interference between two different components of the generated signal pulse.