您的位置: 专家智库 > >

国家自然科学基金(30371253)

作品数:11 被引量:85H指数:6
相关作者:李康武晓岩侯艳武振宇闫晓光更多>>
相关机构:哈尔滨医科大学更多>>
发文基金:国家自然科学基金黑龙江省科技攻关计划更多>>
相关领域:医药卫生生物学更多>>

文献类型

  • 11篇中文期刊文章

领域

  • 7篇医药卫生
  • 4篇生物学

主题

  • 3篇基因
  • 3篇基因表达
  • 3篇基因表达数据
  • 3篇ROC分析
  • 2篇基因筛选
  • 2篇分析方法
  • 2篇ROC
  • 1篇调控网络
  • 1篇新药
  • 1篇新药试验
  • 1篇信息网
  • 1篇信息网络
  • 1篇样本量估计
  • 1篇药物
  • 1篇异基因
  • 1篇有序LOGI...
  • 1篇支持向量
  • 1篇支持向量机
  • 1篇人类基因
  • 1篇人类基因测序

机构

  • 9篇哈尔滨医科大...

作者

  • 9篇李康
  • 2篇赵发林
  • 2篇闫晓光
  • 2篇侯艳
  • 2篇武晓岩
  • 2篇武振宇
  • 1篇谷红梅
  • 1篇游顶云

传媒

  • 8篇中国卫生统计
  • 2篇Chines...
  • 1篇中国医院统计

年份

  • 2篇2009
  • 3篇2008
  • 4篇2007
  • 2篇2006
11 条 记 录,以下是 1-10
排序方式:
几种差异基因分析方法及筛选效果的比较被引量:1
2008年
目的比较六种差异基因筛选方法的使用效果及适用性。方法用Monte-Carlo方法产生不同类型的模拟数据,分别用不同的方法计算、评价其优劣。结果多数情况下SAM法和稳健t检验表现出了最优的筛选能力,SAM-ROC法则表现出更好的稳定性。结论几种方法都能够有效地用于基因筛选,但各自的适应条件不同,综合看SAM法是基因筛选的首选方法,随机森林方法则具有较大的研究价值。
赵发林闫晓光李康
关键词:微阵列数据基因筛选
支持向量机在基因表达数据分类中的应用研究被引量:11
2007年
目的探讨支持向量机在基因表达数据分类研究中的应用条件和效果。方法使用支持向量机软件包,通过实际基因表达数据考核其应用效果,并通过模拟试验进一步验证和研究在含有大量无差异表达基因情况下对分类产生的影响。结果对四种疾病的真实基因表达数据的分类取得了良好的效果,模拟试验则显示了支持向量机对分类具有较高的准确性,但随无差异基因数量的增加其分类效果呈明显下降的趋势;在类间分离一定的情况下,差异表达基因数目较多、基因之间具有较高的相关性时,更容易获得好的分类效果。结论支持向量机在解决小样本、非线性及高维问题中表现出许多潜在的优势,可以有效地用于分析基因表达数据的分类问题。
武振宇李康
关键词:支持向量机基因表达数据
基因表达数据判别分析的随机森林方法被引量:23
2006年
目的探讨随机森林算法在基因表达数据分类研究中的应用。方法通过实际基因表达数据考核其应用效果,并通过模拟试验进一步验证和研究在存在大量无差异表达基因情况下对分类产生的影响。结果随机森林算法对基因表达数据的分类具有较高的准确性,但随着基因数量的增加其判别效果呈下降的趋势,在差异表达基因之间具有相关性时,下降趋势明显减慢,能够获得较理想的分类效果。结论随机森林算法对基因表达数据的分类研究有较好的判别效果。
武晓岩李康
关键词:分类树基因表达数据
临床新药试验中非劣效性检验界值的确定方法被引量:7
2008年
侯艳武振宇李康
关键词:非劣效性新药试验界值试验药物
Identification of differential gene expression for microarray data using recursive random forest被引量:8
2008年
Background The major difficulty in the research of DNA microarray data is the large number of genes compared with the relatively small number of samples as well as the complex data structure. Random forest has received much attention recently; its primary characteristic is that it can form a classification model from the data with high dimensionality. However, optimal results can not be obtained for gene selection since it is still affected by undifferentiated genes. We proposed recursive random forest analysis and applied it to gene selection. Methods Recursive random forest, which is an improvement of random forest, obtains optimal differentiated genes after step by step dropping of genes which, according to a certain algorithm, have no effects on classification. The method has the advantage of random forest and provides a gene importance scale as well. The value of the area under the curve (AUC) of the receiver operating characteristic (ROC) curve, which synthesizes the information of sensitivity and specificity, is adopted as the key standard for evaluating the performance of this method. The focus of the paper is to validate the effectiveness of gene selection using recursive random forest through the analysis of five microarray datasets; colon, prostate, leukemia, breast and skin data. Results Five microarray datasets were analyzed and better classification results have been attained using only a few genes after gene selection. The biological information of the selected genes from breast and skin data was confirmed according to the National Center for Biotechnology Information (NCBI). The results prove that the genes associated with diseases can be effectively retained by recursive random forest. Conclusions Recursive random forest can be effectively applied to microarray data analysis and gene selection. The retained genes in the optimal model provide important information for clinical diagnoses and research of the biological mechanism of diseases.
WU Xiao-yan WU Zhen-yu LI Kang
关键词:MICROARRAY
Issues on the selection of non-inferiority margin in clinical trials被引量:3
2009年
Objective The determination of non-inferiority margin is an important and confusing issue which directly influences the acceptability of a new medication. We reviewed the published literature, International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) Guidelines and Committee for Proprietary Medicinal Products (CPMP) papers on the selection of non-inferiority margin and the corresponding statistical tests in clinical trials, in order to provide practical recommendations and suggestions for establishing reference criteria for the non-inferiority margin in China. Data sources The literature on the selection of a non-inferiority margin and statistical tests was mainly extracted from relevant English articles on non-inferior clinical trials published from 1990 to 2007. The starting point (1990) was chosen due to lack of such papers published prior to 1990. This literature was searched via PubMed, Medline and Chinese Knowledge Information (CNKI). ICH guidelines and CPMP papers were downloaded from their official websites. The keywords "clinical trial", "non-inferiority" and "non-inferiority margin" were used. Study selection Forty-three original articles and critical reviews, ICH El0 guideline and CPMP papers were selected. Results The non-inferiority testing with treatment difference and ratio are commonly used, where the non-inferiority margin is determined with and without historical data. Traditionally, this margin is treated as a fixed value, while developed methods take the variation into account in the determination of this margin, on which the test depends is more convincing. The mixed margin consisting of a margin based on treatment difference and a margin based on treatment ratio can exactly control the type I error at the desirable level and obtain a better power. In this review, we also provide some recommendations and suggestions for the selection of the non-inferiority margin in the western countries and China. C
HOU Yan WU Xiao-yan LI Kang
关键词:NON-INFERIORITY
诊断试验ROC参数估计双正态样本量估计方法探讨被引量:3
2006年
目的探讨ROC双正态样本量估计方法的准确性。方法通过Monte Carlo方法对ROC双正态样本量估计法进行评价与修正。结果根据模拟试验结果得到双正态样本量估计法的校正公式及修正曲线。结论采用文中给出的样本量调整方法,可以有效地进行样本量估计,达到诊断试验评价的要求。
谷红梅李康
关键词:ROC分析参数估计
临床试验评价的ROC分析方法被引量:13
2007年
目的探讨新药临床试验效果的评价问题,给出一种新的统计分析方法。方法基于ROC分析给出多变量ROC模型,采用有序logit联系函数,利用SAS软件进行参数估计,得到有协变量及交互作用情况下的ROC曲线方程及曲线下面积。结果采用文中给出的方法,可以有效地扣除协变量的影响,用ROC曲线直观地评价药物之间的差别和作用。结论本文提供的方法能够更有效地对临床试验做出客观和准确的评价。
赵发林侯艳李康
关键词:ROC分析有序LOGIT模型
连续变量诊断试验数据的ROC分析被引量:5
2007年
目的介绍一种连续诊断变量的ROC回归模型,以及在独立和相关结构下的参数估计方法,给出参数误差估计的Bootstrap方法。方法应用SAS软件中的GENMOD过程和SAS语言编写的程序实现上述过程,并通过实例说明其应用效果。结果利用ROC曲线方程,可以扣除协变量对诊断试验结果评价的影响,并能够计算出在不同协变量取值下的ROC曲线下面积,提供更为丰富和可靠的信息。结论文中给出的ROC回归模型可以有效地用于连续变量诊断试验数据的ROC分析。
李康
关键词:ROC分析
基因表达数据的随机森林逐步判别分析方法被引量:16
2007年
目的给出一种新的随机森林算法,它能在建模过程中自动对变量进行筛选,建立“最优”判断模型。方法采用变量重要性评分和逐步迭代算法选择有作用的变量;通过实际基因表达数据考核其应用效果,并使用R语言编程做模拟试验验证其有效性。结果三种疾病基因表达数据的判别模型,在包含很少量的基因情况下便获得了理想的分类效果;模拟试验则显示在类间区分度较大的情况下,随机森林逐步判别分析的效果明显,能有效地将有作用的变量保留在模型中,提高模型的判别效果;在类间区分度不够大的情况下分类效果提高不明显。结论随机森林逐步判别分析可以有效地应用于基因表达数据的基因筛选和分类研究,但要特别注意由随机波动对分析结果造成的影响。
武晓岩闫晓光李康
关键词:基因表达数据基因筛选
共2页<12>
聚类工具0