Infuence of interface roughness on the reflectivity of Tungsten/boron-carbide (W/B4C) multilayers varying with bi-layer number, N, is investigated. For W/B4C multilayers with the same design period thickness of 2.5 nm, a real-structure model is used to calculate the variation of reflectivities with N = 50, 100, 150, and 200, respectively. Then, these multilayers are fabricated by a direct current (DC) magnetron sputtering system. Their reflectivity and scattering intensity are measured by an X-ray diffractometer (XRD) working at Cu Kα line. The X-ray reflectivity measurement indicates that the reflectivity is a function of its bi-layer number. The X-ray scattering measured results show that the interface roughness of W/B4C multilayers increases slightly from layer to layer during multilayer growing. The variation of the reflectivity and interface roughness with bi-layer number is accurately explained by the presented realstructure model.