This paper describes the successful fabrication of 4H-SiC junction barrier Schottky (JBS) rectifiers with a linearly graded field limiting ring (LG-FLR). Linearly variable ring spacings for the FLR termination are applied to improve the blocking voltage by reducing the peak surface electric field at the edge termination region, which acts like a variable lateral doping profile resulting in a gradual field distribution. The experimental results demonstrate a breakdown voltage of 5 kV at the reverse leakage current density of 2 mA/cm2 (about 80% of the theoretical value). Detailed numerical simulations show that the proposed termination structure provides a uniform electric field profile compared to the conventional FLR termi- nation, which is responsible for 45% improvement in the reverse blocking voltage despite a 3.7% longer total termination length.
We study a series of(HfO2)x(Al2O3)1-x /4H-SiC MOS capacitors. It is shown that the conduction band offset of HfO2 is 0.5 e V and the conduction band offset of Hf AlO is 1.11–1.72 e V. The conduction band offsets of(Hf O2)x(Al2O3)1-x are increased with the increase of the Al composition, and the(HfO2)x(Al2O3)1-x offer acceptable barrier heights(〉 1 e V)for both electrons and holes. With a higher conduction band offset,(Hf O2)x(Al2O3)1-x/4H-SiC MOS capacitors result in a ~ 3 orders of magnitude lower gate leakage current at an effective electric field of 15 MV/cm and roughly the same effective breakdown field of ~ 25 MV/cm compared to HfO2. Considering the tradeoff among the band gap, the band offset, and the dielectric constant, we conclude that the optimum Al2O3 concentration is about 30% for an alternative gate dielectric in 4H-Si C power MOS-based transistors.
This paper reports the performances of Ti/Al based ohmic contacts fabricated on highly doped p-type 4H-SiC epitaxial layer which has a severe step-bunching surface. Different contact schemes are investigated based on the AI:Ti composition with no more than 50 at.% Al. The specific contact resistance (SCR) is obtained to be as low as 2.6 × 10-6Ωcm2 for the bilayered Ti(100 nm)/Al(100 nm) contact treated with 3 rain rapid thermal annealing (RTA) at 1000 ℃. The microstructure analyses examined by physical and chemical characterization techniques reveal an alloy-assisted ohmic contact formation mechanism, i.e., a high degree of alloying plays a decisive role in forming the interfacial ternary Ti3SiC2 dominating the ohmic behavior of the Ti/Al based contact. Furthermore, a globally covered Ti3 SiC2 layer with (0001)-oriented texture can be formed, regardless of the surface step bunching as well as its structural evolution during the metallization annealing.
The interface properties of 4H-SiC metal oxide semiconductor (MOS) capacitors with post-oxidation annealing (POA) in nitric oxide (NO) ambient after high temperature (1300 ℃) oxidation have been investigated using capacitance-voltage (C V) measurements. The experimental results show that the interface states density (Dit) can be obviously decreased by the POA in NO ambient (NO-POA) and further reduced with increasing POA temperature and time. In the meantime significant reduction of the interface states density and oxidation time can be achieved at the higher thermal oxidation temperature, which results in the better oxide MOS characteristics and lower production costs. The dependence of Dit on POA temperature and time has been also discussed in detail.
The effect of the mesa configuration on the reverse breakdown characteristic of a SiC PiN rectifier for high-voltage applications is analyzed in this study.Three geometrical parameters,i.e.,mesa height,mesa angle and mesa bottom corner,are investigated by numerical simulation.The simulation results show that a deep mesa height,a small mesa angle and a smooth mesa bottom(without sub-trench) could contribute to a high breakdown voltage due to a smooth and uniform surface electric field distribution.Moreover,an optimized mesa structure without sub-trench(mesa height of 2.2 μm and mesa angle of 20°) is experimentally demonstrated.A maximum reverse blocking voltage of 4 kV and a forward voltage drop of 3.7 V at 100 A/cm^2 are obtained from the fabricated diode with a 30-μm thick N^- epi-layer,corresponding to 85% of the ideal parallel-plane value.The blocking characteristic as a function of the JTE dose is also discussed for the PiN rectifiers with and without interface charge.
The non-ideal effect of 4H-SiC bipolar junction transistor (BJT) with a double Gaussian-doped base is characterized and simulated in this paper. By adding a specific interface model between SiC and SiO2, the simulation results are in good agreement with the experiment data. An obvious early effect is found from the output characteristic. As the temperature rises, the early voltage increases, while the current gain gradually decreases, which is totally different from the scenario of silicon BJT. With the same effective Gummet number in the base region, the double Gaussian-doped base structure can realize higher current gain than the single base BJT due to the built-in electric field, whereas the early effect will be more salient. Besides, the emitter current crowding effect is also analyzed. Due to the low sheet resistance in the first highly- doped base epilayer, the 4H-BJT with a double base has more uniform emitter current density across the base-emitter junction, leading to better thermal stability.
为了缓解AlGaN/GaN high electron mobility transistors(HEMT)器件n型GaN缓冲层高的泄漏电流,本文提出了具有氟离子注入新型Al0.25Ga0.75N/GaN HEMT器件新结构.首先分析得出n型GaN缓冲层没有受主型陷阱时,器件输出特性为欧姆特性,这样就从理论和仿真方面解释了文献生长GaN缓冲层掺杂Fe,Mg等离子的原因.利用器件输出特性分别分析了栅边缘有和没有低掺杂漏极时,氟离子分别注入源区、栅极区域和漏区的情况,得出当氟离子注入源区时,形成的受主型陷阱能有效俘获源极发射的电子而减小GaN缓冲层的泄漏电流,击穿电压达到262V.通过减小GaN缓冲层体泄漏电流,提高器件击穿电压,设计具有一定输出功率新型AlGaN/GaN HEMT提供了科学依据.