国家自然科学基金(60873151) 作品数:7 被引量:32 H指数:4 相关作者: 金忠 卢桂馥 王勇 林忠 殷俊 更多>> 相关机构: 南京理工大学 安徽工程大学 安徽工程科技学院 更多>> 发文基金: 国家自然科学基金 国家高技术研究发展计划 国家教育部博士点基金 更多>> 相关领域: 自动化与计算机技术 更多>>
基于可见光与红外数据融合的地形分类 被引量:1 2013年 针对单传感器地形分类效果不佳的问题,提出一种基于可见光与红外数据融合的地形分类方法。分别对可见光图像与红外图像提取特征,使用最近邻分类器和最小距离分类器进行后验概率估计,将来自不同特征、不同分类器的后验概率加权组合,通过散度计算得到特征的权重,实验确定分类器的权重,并在最小距离的后验概率估计中,使用马氏距离代替欧氏距离。实验结果表明,该方法对水泥路和沙子路的识别率分别达到99.33%和96.67%,均高于同类方法。 顾迎节 金忠关键词:分类器组合 后验概率 红外图像 距离保持投影非线性降维技术的可视化与分类 被引量:5 2009年 本文对高维数据距离保持投影方法进行了改进和扩展,采用测地线距离代替欧氏距离,能够正确地展开数据所在的流形,同时又准确地保留了每个数据点到其最近邻点和部分近邻点之间的距离.为了减少邻域大小难以选取问题,采取了对邻域大小不甚敏感的P-ISOMAP算法.与原方法和ISOMAP等高维数据降维方法相比,本文方法能更好地对数据进行降维和可视化.并且,为了进行分类,本文扩展了新的分类技术.实验表明本文方法在可视化、降维和分类方面效果不错. 刘中华 周静波 陈燚 金忠关键词:ISOMAP 最小生成树 测地线距离 基于最大间距准则的局部图嵌入特征提取方法 被引量:6 2011年 针对局部线性嵌入(LLE)算法和最大间距准则(MMC)算法在特征提取问题中存在不足,提出一种有效的数据降维和分类方法——基于最大间距准则的局部图嵌入特征提取算法,并将其应用在人脸识别上.该算法在保持近邻的前提下,分别构造类内紧致图和类间惩罚图.首先在类内紧致图中利用线性重构的局部对称性找出高维数据空间中的非线性结构,使同类样本尽可能地聚集在一起;然后在类间惩罚图中使不同类别的样本尽可能分离;为了避免"小样本"问题,采用MMC的形式构造目标函数.在ORL,Yale和AR人脸图像库进行实验的结果表明,文中算法相对于DLA和LLE+LDA算法有较好的识别性能. 万鸣华 金忠关键词:局部线性嵌入 数据降维 人脸识别 最大间距准则 一种快速的零空间算法 被引量:3 2012年 为了进一步提高零空间算法的运行效率,提出了一种新的快速的零空间算法(FINBSA).FINBSA不需要进行特征值分解或奇异值分解,而只需一次正交三角(QR)分解就可以求得最佳投影矩阵,使得FINBSA的算法复杂度比现有的零空间算法要低.在PIE人脸库上的实验结果表明,FINBSA的识别率与现有的零空间算法相同,但是远比现有的零空间算法要高效,尤其是在训练样本数较多时,FINBSA的运行时间比现有零空间算法节省了100%以上. 卢桂馥 王勇 邹健关键词:特征提取 线性鉴别分析 人脸识别 完备非监督鉴别投影与人脸图像分析 被引量:7 2010年 针对已有的非监督鉴别投影(UDP)仅仅利用局部散布矩阵的零空间外信息,导致零空间内信息丢失的问题,为了同时利用局部散布矩阵的零空间内和零空间外的信息,提出一种完备的非监督鉴别投影(CUDP)算法.在局部散布矩阵的零空间内,通过最大化非局部散布提取有效特征;在局部散布矩阵的零空间外,通过最大化非局部散布同时最小化局部散布提取其有效特征;最后将这2类特征组合起来形成CUDP的特征.在ORL和FERET人脸库上的人脸识别实验,以及CMU和Yale人脸库上的人脸表情识别实验的结果,证明了CUDP算法的有效性. 殷俊 金忠关键词:特征抽取 人脸识别 人脸表情识别 基于QR分解的线性图嵌入算法与人脸识别 被引量:2 2010年 针对小样本问题,提出了一种基于QR分解的线性图嵌入(Linear Extension of Graph Embedding,LGE)求解算法,并将其用于人脸识别。与传统的用主成分分析进行降维不同,新算法利用QR分解对数据进行降维,然后在降维后的空间利用线性图嵌入算法进行二次特征抽取,最后利用最近邻分类器进行分类识别。新算法有效的解决了小样本问题,并且在降维的过程中不损失鉴别信息,提高了算法的识别率。在Yale和PIE人脸数据库的实验表明了本文算法在识别性能上优于传统算法。 卢桂馥 王勇 金忠关键词:最佳鉴别矢量 降维 QR分解 基于最大差值的二维边界Fisher的人脸识别 被引量:8 2010年 提出了一种基于最大差值的二维边界Fisher的鉴别分析方法。该方法利用描述类间数据可分性的相似度矩阵Sp与描述类内数据紧致性的相似度矩阵Sc之差作为鉴别准则,从而避免了边界Fisher鉴别分析所遇到的小样本问题。所提方法是直接基于图像矩阵的,与以往的基于图像向量的方法相比,进一步提高了识别的正确率。另外,还揭示了基于最大差值的边界Fisher鉴别方法和边界Fisher鉴别的内在关系。在ORL和Yale人脸数据库上的实验表明,所提方法具有较高的识别率。 卢桂馥 林忠 金忠关键词:人脸识别 图像矩阵