提出一种基于局部判别正切空间排列(local discriminative tangent space alignment,LDTSA)的高光谱影像降维方法。LDTSA源于局部正切空间排列(LTSA)中的排列机制,在一个局域块内利用线性局部正切平面对类内样本的流形结构建模,同时还考虑到类间判别信息以最大化判别边界。利用多幅高光谱数据进行降维和分类试验。结果表明,LDTSA主要有三个优点:①在小样本问题上性能稳定;②在降维过程中保持类别间的判别信息;③有效挖掘数据集的几何流形结构。
人脸识别中,传统数据降维方法将人脸图像重排列成向量后进行处理,丢失了数据本身的结构特性,导致识别精度不高。本文发展了一种基于张量的数据降维方法——多维正交判别子空间投影。该算法直接用张量描述人脸,并通过张量到矢量投影(tensor to vector projection,TVP)将张量数据投影到向量判别子空间。此方法寻找相互正交的投影向量集,使得判别子空间中数据类间离散度最大,同时类内离散度最小;进而利用TVP投影将高维张量数据映射成低维向量数据,在合适的约束条件下,这些降维后的向量特征数据是整个人脸数据中最具代表性的特征数据;最后,使用k最近邻(KNN)分类器将这些特征数据分类。利用经典人脸数据库ORL进行实验,验证了本文方法的有效性。