中国博士后科学基金(20090450119)
- 作品数:25 被引量:278H指数:9
- 相关作者:陶新民付丹丹刘玉张冬雪郝思媛更多>>
- 相关机构:哈尔滨工程大学哈尔滨电力职业技术学院黑龙江省科技学院更多>>
- 发文基金:中国博士后科学基金国家教育部博士点基金国家自然科学基金更多>>
- 相关领域:自动化与计算机技术机械工程更多>>
- 基于两阶段学习的半监督支持向量机分类算法被引量:4
- 2012年
- 提出了一种基于两阶段学习的半监督支持向量机(semi-supervised SVM)分类算法.首先使用基于图的标签传递算法给未标识样本赋予初始伪标识,并利用k近邻图将可能的噪声样本点识别出来并剔除;然后将去噪处理后的样本集视为已标识样本集输入到支持向量机(SVM)中,使得SVM在训练时能兼顾整个样本集的信息,从而提高SVM的分类准确率.实验结果证明,同其它半监督学习算法相比较,本文算法在标识的训练样本较少的情况下,分类性能有所提高且具有较高的可靠性.
- 陶新民曹盼东宋少宇付丹丹
- 关键词:VECTOR
- 组合分布估计和差分进化的多目标优化算法被引量:7
- 2013年
- 为了提高多目标优化算法的收敛能力及求解精度,提出了一种组合分布估计和差分进化的多目标优化算法.该方法用分布估计算法和差分进化算法共同生成种群中的粒子,利用选择因子来控制每个粒子的产生方式,并且根据迭代次数的增加来改变2种算法的使用比例,搜索初期利用分布估计算法进行快速定位,然后用差分进化算法进行精确搜索.并对差分进化算法的变异因子进行了改进,定义了一个可变的变异因子,来控制不同搜索时期中差分进化算法的变异范围.用4个测试函数对算法进行了仿真测试,并同NSGA-Ⅱ和RM-MEDA进行了比较.实验结果表明,该算法具有良好的收敛性和分布性,并且效果稳定.
- 陶新民徐鹏刘福荣张冬雪
- 关键词:多目标优化分布估计算法差分进化算法
- 定向多尺度变异克隆选择优化算法被引量:9
- 2011年
- 提出一种定向多尺度变异克隆选择优化算法.为了实现抗体间信息共享,算法利用定向进化机制引导抗体向着抗体群最优解区域逼近.采用多尺度高斯变异机制,在算法初期利用大尺度振荡变异实现了全局最优解空间的快速定位.随着适应值的提升,小尺度变异会随之减低,使得算法在进化后期通过小尺度变异完成局部精确解的搜索.将算法应用到5个经典函数优化问题,结果表明,该算法不仅具有更快的收敛速度,而且全局解搜索能力和稳定性均有显著提高.
- 陶新民刘福荣刘玉付丹丹
- 关键词:克隆选择定向进化
- 基于GARCH模型MSVM的轴承故障诊断方法被引量:9
- 2010年
- 针对振动信号因非平稳性导致自回归(AR)模型无法有效描述信号特征的不足,提出一种基于广义自回归条件异方差(GARCH)模型多类支持向量机(MSVM)的故障诊断方法。该方法首先利用GARCH模型拟合各种故障信号,将所得模型参数作为故障诊断特征,以MSVM作为故障诊断方法。试验结果验证了GARCH模型方法的可行性和有效性,同时将该方法同基于AR模型的方法及其改进方法进行比较,结果表明该方法在诊断率及诊断时间上都有明显提高。
- 陶新民徐晶杨立标刘玉
- 关键词:多类支持向量机
- 基于多尺度并行免疫克隆优化聚类算法被引量:4
- 2012年
- 针对无监督分类问题,提出一种多尺度并行免疫克隆优化聚类算法.算法中,进化在多个子群之间并行进行,不同子群的抗体根据子群适应度采用不同变异尺度.进化初期,利用大尺度变异子群实现全局最优解空间的快速定位,同时变异尺度随着适应值的提升逐渐降低;进化后期,利用小尺度变异子群完成局部解空间的精确搜索.将新算法与其他聚类算法进行比较,所得结果表明新算法具有较好的聚类性能和鲁棒性.
- 陶新民付丹丹刘福荣刘玉
- 关键词:聚类算法变异算子
- 基于半监督高斯混合模型核的支持向量机分类算法被引量:5
- 2013年
- 提出了一种基于高斯混合模型核的半监督支持向量机(SVM)分类算法.通过构造高斯混合模型核SVM分类器提供未标示样本信息,使得SVM算法在学习标示样本信息的同时,能够兼顾整个训练样本集合的聚类假设.实验部分将该算法同传统SVM算法、直推式支持向量机(TSVM)以及随机游走(RW)半监督算法进行分类性能比较,结果证明该算法在拥有较少标示样本训练的情况下分类性能也有所提高且具有较高的鲁棒性.
- 陶新民曹盼东宋少宇付丹丹
- 关键词:支持向量机算法高斯混合模型
- 一种基于流形距离核的谱聚类算法被引量:27
- 2012年
- 针对标准谱聚类算法中,基于欧氏距离的相似性度量不能完全反映数据聚类复杂的空间分布特性的问题,提出了一种基于流形距离核的谱聚类算法.它能充分挖掘数据集中的内在结构信息,较好地反映局部和全局一致性,并且可以很好地防止"桥"噪声点的影响,提高算法的聚类性能.与传统的聚类算法和常见谱聚类算法进行了比较,在人工数据集和UCI数据集上的实验都验证了本算法能够获得更好的聚类效果.
- 陶新民宋少宇曹盼东付丹丹
- 关键词:谱图理论谱聚类自适应
- 不均衡数据分类算法的综述被引量:66
- 2013年
- 传统的分类方法都是建立在类分布大致平衡这一假设基础上的,然而实际情况中,数据往往都是不均衡的。因此,传统分类器分类性能通常比较有限。从数据层面和算法层面对国内外分类算法做了详细而系统的概述。并通过仿真实验,比较了多种不平衡分类算法在6个不同数据集上的分类性能,发现改进的分类算法在整体性能上得到不同程度的提高,最后列出了不均衡数据分类发展还需解决的一些问题。
- 陶新民郝思媛张冬雪徐鹏
- 关键词:不均衡数据
- 基于谱聚类欠取样的不均衡数据SVM分类算法被引量:28
- 2012年
- 提出一种基于谱聚类欠取样的不均衡数据支持向量机(SVM)分类算法.该算法首先在核空间中对多数类样本进行谱聚类;然后在每个聚类中根据聚类大小和该聚类与少数类样本间的距离,选择具有代表意义的信息点;最终实现训练样本间的数目均衡.实验中将该算法同其他不均衡数据预处理方法相比较,结果表明该算法不仅能有效提高SVM算法对少数类的分类性能,而且总体分类性能及运行效率都有明显提高.
- 陶新民张冬雪郝思媛付丹丹
- 关键词:不均衡数据SVM算法谱聚类
- 一种自适应指导的文化粒子群算法被引量:3
- 2011年
- 针对文化粒子群算法中影响函数对群体空间的全局变异操作,易导致粒子群算法结构失效及不易收敛的缺点,将群体适应度方差引入到群体空间,提出一种自适应指导的文化粒子群算法。算法通过计算群体适应度方差判断群体空间状态,当算法陷入局部最优时,自适应地利用影响函数对群体空间进行变异更新,从而有效发挥了文化粒子群算法"双演化双促进"机制。将该算法与基本粒子群算法(PSO)、文化粒子群算法(CPSO)和自适应变异粒子群算法(AMPSO)进行比较,实验结果证明该算法不仅具有较好的全局收敛性,算法收敛速度和稳定性也都有显著提高。
- 陶新民杨立标
- 关键词:影响函数