The local coordination structures around the doping Yb2+ ions in sodium and potassium halides were calculated by using the first-principles supercell model. Both the cases with and without the charge compensation vacancy in the local environment of the doping Yb2+ were calculated to study the effect of the doping on the local coordination structures of Yb2+. Using the calculated local structures, we obtained the crystal-field parameters for the Yb2+ ions doped in sodium and potassium halides by a method based on the combination of the quantum-chemical calculations and the effective Hamiltonian method. The calculated crystal-field parameters were analyzed and compared with the fitted results.
Glasses are prepared by sintering P2O5, ZnO and Ce2(C2O4)3 10H2O mixtures at 1 100 ℃ in air and then annealed at 400 ℃ for 10 hours. The obtained glasses are homogeneous, transparent and colorless. Emission and excitation spectra are measured for the samples and the results show that the glasses contain Ce3+ trivalent cerium ions. The parameters of glass preparation obtained here may be adapted to preparing this type of glasses doped with other lanthanide ions, so as to study energy transfer phenomena and variation of radiative lifetime with refractive index due to local field effect.