Ilmenite was reduced through microwave plasma-assisted chemical vapor deposition with continuously flowing hydrogen and methane gas. The reduction products were analyzed by XRD and SEM technology, and the component products were TiO 2 -Carbon Nanotubes (CNTs) composite powders. The reduction process was in good agreement with the Jander equation. Compared with other reduction process by kinetics analysis, microwave plasma could significantly facilitate the reduction process at low temperature.
The reduction process of ilmenite by hydrogen and methane under MPCVD was analyzed by XRD result. The reduction degree of ilmenite increased with adding methane, the case similar to reduction rate. The mechanism of reduction process changed with the increasement of methane flow because of the formation of carbon nanotubes (CNTs). The morphology of reduced samples was observed by SEM, and it was found that CNTs played an important role in the fracture of ilmenite particles. The reduction kinetics showed that the reduction was rate-controlling for hydrogen, and diffusion-controlling when hydrogen mixed with high flow methane.
An on-chip electrochemical detector for microfluidic chips was described, based on integrated carbon nanotube (CNT) electrodes directly onto the chip substrate through microwave plasma chemical vapor deposition (MWPCVD). The attractive performance of the integrated CNT electrodes was demonstrated for the amperometric detection of sucrose, glucose and D-fructose. The integrated CNT electrodes showed stronger electrocatalytic activity than gold electrodes.