Arrays of low-dimensional molecular crystals of square columns(1-D)and nanolamellae(2-D)of Zn[TCNQ]_(2)(H_(2)O)_(2)with large areas(up to 1020 cm^(2))have been synthesized by controlled addition of water to Zn and TCNQ.Based on the ability to accurately control the reaction,a new moisture and water indicator has been developed.The simple method,the large areas of material prepared,the fine size tuning,and the typical semiconductor behavior of the resulting low-dimensional molecular materials promise applications in molecular electronics as well as nanoelectronics.The system is an effective indicator for the detection of traces of water and moisture.
The electron-acoustic phonon scattering for charge transport in organic semiconductors has been studied by first-principles density functional theory and the Boltzmann transport equation with relaxation time approximation. Within the framework of deformation-potential theory, the electron-longitudinal acoustic phonon scattering probability and the corresponding relaxation time have been obtained for oligoacene single crystals (naphthalene, anthracene, tetracene and pentacene). Previously, the electron-optic phonon scattering mechanism has been investigated through Holstein-Peierls model coupled with DFT calculations for naphthalene. Numerical results indicate that the acoustic phonon scattering intensity is about 3 times as large as that for the optic phonon and the obtained mobility is in much better agreement with the result of the experiment done for ultrapure single crystals. It is thus concluded that for closely packed molecular crystal where the electron is partly delocalized, acoustic phonon scattering mechanism prevails in the charge transport. Moreover, it is found that the intrinsic electron mobility is even larger than hole mobility. A frontier orbital overlap analysis can well rationalize such behavior.
A new benzoimidazole-naphthalimide derivative 4 was synthesized and its photophysical properties were studied. This compound showed highly selectively and sensitive colorimetric and ratiometric sensing ability for fluoride anion.
Organic single crystals hold great promise for the development of organic semiconductor materials,because they could reveal the intrinsic electronic properties of these materials,providing high-performance electronic devices and probing the structureproperty relationships.This article reviews the preparation methods for organic single crystals or crystalline micro/nanostructures,including vapor phase growth methods and solution-processed methods,and summarizes a few methods employed in the fabrication of field-effect transistors along with dozens of examples concerning both small molecules and polymers with high field-effect performance.
FU XiaoLong,WANG ChengLiang,LI RongJin,DONG HuanLi & HU WenPing Beijing National Laboratory for Molecular Sciences,Key Laboratory of Organic Solids,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China