The stems of water convolvulus were employed as biotemplates for the replication of their optimized 3D hierarchical architecture to synthesize porous MgO-modified TiO2 . The photocatalytic reduction of CO2 with H2O vapor into hydrocarbon fuel was studied with these MgO-TiO2 nanostructures as the photocatalysts with the benefits of improved CO2 adsorption and activation through incorporated MgO. Various factors involving CO2 adsorption capacity, migration of charge carriers to the surface, and the number of activity sites, which depend on the amount of added MgO, determine the photocatalytic conversion efficiency.
Mn substitution compounds YCOl-xMnxO3 (0 ≤ x ≤ 0.2) are synthesized by using the sol-gel process. Electrical transport properties of YCo1-xMnxO3 are investigated in the temperature range from 200 K to 780 K. The experimental results show that after Mn substitution the electrical resistivity of YCo1-xMnxO3 first increases, then decreases, which is due to the electrons introduced by Mn doping. The sign of Seebeck coefficient for YCo1-xMnxO3 (x ≠ 0) is positive or negative, which is also proved by the Hall coefficient measurement. Moreover, at about room temperature, the Seebeck coefficient of YCO1-xMnxO3 with 1% doping Mn content becomes a negative value, whose absolute value is maximum; furthermore, the absolute value gradually decreases with increasing the Mn substitution content, which can be explained by the double carder model.
Thermoelectric properties of Al substituted compounds Ca3(Co1-xAlx)4O9 (x=0, 0.03, 0.05), prepared by a sol-gel process, have been investigated in the temperature range 305-20 K. The results indicate that after Al substitution for Co in Ca3(Co1-xAlx)4O9, the direct current electrical resistivity and thermopower increase due to the reduction of carrier concentration. Experiments show that Al substitution results in decreased lattice thermal conductivity. The figure of merit of temperature behavior suggests that Ca3(Co0.97Al0.03)4O9 would be a promising candidate thermoelectric material for high-temperature thermoelectric application.
Yi LiuHong-mei ChenJin-lian HuXu-bing TangHai-jin LiWei Wang
Electrical transport and thermoelectric properties of Ni-doped YCOl-xNixO3 (0 ≤ x ≤0.07), prepared by using the sol-gel process, are investigated in a temperature range from 100 to 780 K. The results show that with the increase of Ni doping content, the values of DC resistivity of YCo 1-xNixO3 decrease, but carder concentration increases. The temperature dependences of the resistivity for YCOl-xNixO3 are found to follow a relation of lnp o, lIT in a low-temperature range (LTR) (T 〈- 304 K for x = 0; - 230 K 〈 T 〈- 500 K for x = 0.02, 0.05, and 0.07) and high-temperature range (HTR) (T 〉-655 K for all compounds), respectively. The estimated apparent activation energies for conduction Eal in LRT and Ea2 in HTR are both found to decrease monotonically with doping content increasing. At very low temperatures (T 〈-230 K), Mott's law is observed for YCOl-xNixO3 (x≥ 0.02), indicating that considerable localized states form in the heavy doping compounds. Although the Seebeck coefficient of the compound decreases after Ni doping, the power factor of YCOl-xNixO3 is enhanced remarkably in a temperature range from 300 to 740 K, i.e., a 6-fold increase is achieved at 500 K for YCo0.98Ni0.0203, indicating that the high-temperature thermoelectric property of YCoO3 can be improved by partial substitution of Ni for Co.