Hyperbranched polyethers with different structures and molecular weights(MW) were synthesized using the A2+B3 approach by varying monomer ratio, A2 structure, and reaction time. Effects of backbone structure and MW on melt rheological behaviors were investigated by both small amplitude oscillatory shear and steady shear measurements. Master curves were constructed using the time-temperature superposition principle and compared. In the reduced frequency range covered, lg G″-lg(ω·aT) always show a slope of 1.0, suggesting a terminal zone behavior; in contrast, unexpected step changes or plateaus are observed on lg G′ master curves. Effects of backbone structure and MW on master curves were discussed. The Cox-Merz rule was tested at different temperatures and was found to be applicable when flow instability was absent.
A novel liquid hyperbranched polyether epoxy (HBPEE) based on commercially available hydroquinone (HQ) and 1,1,1-trihydroxymethylpropane triglycidyl ether (TMPGE) was synthesized through an A2 + B3 one-step proton transfer polymerization. In order to improve the toughness, the synthesized HBPEE was mixed with diglycidyl ether of bisphenol A (DGEBA) in different ratios to form hybrids and cured with triethylenetetramine (TETA). Thermal and mechanical properties of the cured hybrids were evaluated. Results show that addition of HBPEE can improve the toughness of cured hybrids remarkably at 〈 20 wt% loading, without compromising the tensile strength. However, the glass transition temperature (Tg) of the cured hybrids decreases with increasing HBPEE content. Fracture surface images from scanning electron microscope show oriented fibrils in hybrids containing HBPEE. The formation and orientation of the fibrils can absorb energy under impact and lead to an improvement of toughness. Furthermore, based on the morphology of fractured surfaces and the single Tg in each hybrid, no sign of phase separation was found in the cured hybrid systems. As a result, the toughening mechanism could be explained by in situ homogeneous toughening mechanism rather than phase separation mechanism.
It has been experimentally shown that epoxide-terminated hyperbranched polyether sulphone (EHBPES) can significantly improve the mechanical properties of traditional diglycidyl ether of bisphenol A/triethylenetetramine (DGEBA/TETA) systems, but the origin of the improvement is still unclear. In this work, we used molecular dynamics (MD) simulations to gain a thorough understanding of the origin of modulus improvement for EHBPES/DGEBA/TETA systems. It is found that the modulus of EHBPES/DGEBA/TETA systems increases with the increase of EHBPES loading. In addition, the crosslinking density, cohesive energy density (CED), and free volume can be used to understand the modulus for EHBPES/DGEBA/TETA systems. It is shown that the highest modulus is achieved at 7 wt% EHBPES loading due to the highest crosslinking density and CED. When EHBPES loading is below 7 wt%, the higher CED and crosslinking density are responsible for the higher modulus. At higher loadings (〉 7 wt%), the decreased modulus is closely related to the decreased crosslinking density and increased fractional free volume. It is expected that our results could be of great implications for designing high-performance epoxy materials.
Xue-Pei MiaoDao-Jian ChengYa-Dong DaiYan MengXiao-Yu Li