Plate subduction is the most magnificent process in the Earth. Subduction zones are important sites for proceeding matter- and energy- transports between the Earth's surface and the interior, continental crust growth, and crust-mantle interactions. Besides, a number of geological processes in subduction zones are closely related to human beings' daily life, such as volcanic eruptions and earthquakes, formation of mineral deposits. Subduction process thus has long been the centric topic of Earth sciences. The finding in 1980 s that continental crust could be subducted to mantle depths is a revolutionary progress in plate tectonic theory. Compared to oceanic crust, continental crust is colder, drier, lighter, and much more geochemically/isotopically heterogeneous. Hence, continental subduction process would affect the structure, compositions and evolutions of the overlying mantle wedge even more. During continental subduction and subsequent exhumation, fluids and melts can be generated in the(de)hydration process and partial melting process, respectively. These melts/fluids play important roles in crust-mantle interactions, elemental migrations, isotopic fractionations, and mantle metasomatism. By summarizing recent research works on subduction zones in this paper, we present a review on the types, physicochemical conditions and compositions of fluids/melts, as well as the migration behaviors of fluid-related characteristic elements(Nb-Ta-V) and the fractionation behaviors of non-traditional stable isotopes(Li-Mg) in subduction zones. The aim of this paper is to provide the readers an update comprehensive overview of the melt/fluid activities in subduction zones and of Li-Mg isotope systematics in subduction-related rocks and minerals.
XIAO YiLinSUN HeGU HaiOuHUANG JianLI WangYeLIU Lei