您的位置: 专家智库 > >

国家自然科学基金(11101414)

作品数:3 被引量:4H指数:1
相关作者:李琴更多>>
相关机构:北京工商大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:理学更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学

主题

  • 2篇CONVER...
  • 1篇有限元
  • 1篇有限元方法
  • 1篇元方法
  • 1篇真理
  • 1篇特征值
  • 1篇特征值问题
  • 1篇微积分
  • 1篇相对真理
  • 1篇绝对真理
  • 1篇积分
  • 1篇NUMERI...
  • 1篇RECONS...
  • 1篇RECTAN...
  • 1篇FEM
  • 1篇FLUX
  • 1篇LAGRAN...
  • 1篇MESHES
  • 1篇SUPERC...
  • 1篇ARBITR...

机构

  • 1篇北京工商大学

作者

  • 1篇李琴

传媒

  • 1篇数学的实践与...
  • 1篇Journa...
  • 1篇Commun...

年份

  • 3篇2014
3 条 记 录,以下是 1-3
排序方式:
关于特征值问题有限元方法研究的一个说法被引量:3
2014年
受林群的微积分哲学公式((相对真理)/(绝对真理)=0.9)的启示,总结了近些年来关于特征值问题有限元方法的研究,并发现其背后同样隐藏着该哲学公式,换句话说,所追求的是特征值问题的有限元数值解和真解的零距离,其实就是追求真解的过程,要经多道(即0.9,0.99,0.999,…),再将比例,即(数值解)/(真解),提到1.
李琴
关键词:相对真理特征值问题有限元方法
Numerical Analysis of an Adaptive FEM for Distributed Flux Reconstruction
2014年
This paper studies convergence analysis of an adaptive finite element algorithm for numerical estimation of some unknown distributed flux in a stationary heat conduction system,namely recovering the unknown Neumann data on interior inaccessible boundary using Dirichlet measurement data on outer accessible boundary.Besides global upper and lower bounds established in[23],a posteriori local upper bounds and quasi-orthogonality results concerning the discretization errors of the state and adjoint variables are derived.Convergence and quasi-optimality of the proposed adaptive algorithm are rigorously proved.Numerical results are presented to illustrate the quasi-optimality of the proposed adaptive method.
Mingxia LiJingzhi LiShipeng Mao
CONVERGENCE AND SUPERCONVERGENCE ANALYSIS OF LAGRANGE RECTANGULAR ELEMENTS WITH ANY ORDER ON ARBITRARY RECTANGULAR MESHES被引量:1
2014年
This paper is to study the convergence and superconvergence of rectangular finite elements under anisotropic meshes. By using of the orthogonal expansion method, an anisotropic Lagrange interpolation is presented. The family of Lagrange rectangular elements with all the possible shape function spaces are considered, which cover the Intermediate families, Tensor-product families and Serendipity families. It is shown that the anisotropic interpolation error estimates hold for any order Sobolev norm. We extend the convergence and superconvergence result of rectangular finite elements to arbitrary rectangular meshes in a unified way.
Mingxia LiXiaofei GuanShipeng Mao
共1页<1>
聚类工具0