您的位置: 专家智库 > >

国家自然科学基金(10973020)

作品数:9 被引量:26H指数:4
相关作者:崔延美李蓉刘四清王华宁孙媛更多>>
相关机构:中国科学院北京物资学院中国科学院国家天文台更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划北京市属高等学校人才强教计划资助项目更多>>
相关领域:天文地球自动化与计算机技术医药卫生更多>>

文献类型

  • 9篇中文期刊文章

领域

  • 6篇天文地球
  • 5篇自动化与计算...
  • 1篇医药卫生

主题

  • 3篇质子事件
  • 3篇神经网
  • 3篇神经网络
  • 3篇太阳质子事件
  • 2篇支持向量
  • 2篇网络
  • 2篇向量
  • 2篇SUN
  • 2篇BP神经
  • 2篇BP神经网
  • 2篇BP神经网络
  • 2篇FLARES
  • 2篇MAGNET...
  • 2篇磁场
  • 1篇耀斑
  • 1篇应用数据
  • 1篇支持向量机
  • 1篇太阳耀斑
  • 1篇特征参量
  • 1篇权值

机构

  • 4篇北京物资学院
  • 4篇中国科学院
  • 1篇中国科学院国...

作者

  • 4篇崔延美
  • 4篇李蓉
  • 2篇刘四清
  • 1篇孙媛
  • 1篇王华宁

传媒

  • 2篇空间科学学报
  • 2篇Scienc...
  • 2篇Resear...
  • 2篇中国科学:物...
  • 1篇科学技术与工...

年份

  • 3篇2012
  • 4篇2011
  • 2篇2010
9 条 记 录,以下是 1-9
排序方式:
机器学习技术在胸癌诊断中的应用被引量:2
2011年
为了提高胸癌诊断的识别精度,提出了应用机器学习方法建立胸癌诊断模型。其中描述细胞特征的参量作为模型的输入,细胞的类别对应模型的输出。选取三种机器学习方法作为建立模型的训练算法,分别为反向传播(Back Propagation,BP)神经网络、学习矢量量化网络(Learning Vector Quantity,LVQ)和支持向量机(Support Vector Machine,SVM)。仿真结果显示三种机器学习方法所见的诊断模型均具有较高的识别率(BP:97.28%,LVQ:98.06%,SVM:98.45%),可作为有效地识别方法用于其他医学诊断研究。
李蓉孙媛
关键词:神经网络特征参量支持向量权值
Application of a data-driven simulation method to the reconstruction of the coronal magnetic field被引量:2
2012年
Ever since the magnetohydrodynamic (MHD) method for extrapolation of the solar coronal magnetic field was first developed to study the dynamic evolution of twisted magnetic flux tubes, it has proven to be efficient in the reconstruction of the solar coronal magnetic field. A recent example is the so-called data-driven simu- lation method (DDSM), which has been demonstrated to be valid by an application to model analytic solutions such as a force-free equilibrium given by Low and Lou. We use DDSM for the observed magnetograms to reconstruct the magnetic field above an active region. To avoid an unnecessary sensitivity to boundary conditions, we use a classical total variation diminishing Lax-Friedrichs formulation to iteratively compute the full MHD equations. In order to incorporate a magnetogram consistently and sta- bly, the bottom boundary conditions are derived from the characteristic method. In our simulation, we change the tangential fields continually from an initial potential field to the vector magnetogram. In the relaxation, the initial potential field is changed to a nonlinear magnetic field until the MHD equilibrium state is reached. Such a stable equilibrium is expected to be able to represent the solar atmosphere at a specified time. By inputting the magnetograms before and after the X3.4 flare that occurred on 2006 December 13, we find a topological change after comparing the magnetic field before and after the flare. Some discussions are given regarding the change of magnetic con- figuration and current distribution. Furthermore, we compare the reconstructed field line configuration with the coronal loop observations by XRT onboard Hinode. The comparison shows a relatively good correlation.
Yu-Liang Fan Hua-Ning Wang Han He Xiao-Shuai Zhu
Solar flare forecasting using learning vector quantity and unsupervised clustering techniques被引量:10
2011年
In this paper, a combined method of unsupervised clustering and learning vector quantity (LVQ) is presented to forecast the occurrence of solar flare. Three magnetic parameters including the maximum horizontal gradient, the length of the neutral line, and the number of singular points are extracted from SOHO/MDI longitudinal magnetograms as measures. Based on these pa- rameters, the sliding-window method is used to form the sequential data by adding three days evolutionary information. Con- sidering the imbalanced problem in dataset, the K-means clustering, as an unsupervised clustering algorithm, is used to convert imbalanced data to balanced ones. Finally, the learning vector quantity is employed to predict the flares level within 48 hours. Experimental results indicate that the performance of the proposed flare forecasting model with sequential data is improved.
LI RongWANG HuaNingCUI YanMeiHUANG Xin
应用数据挖掘技术的短期太阳耀斑预报模型被引量:3
2011年
为了进一步探讨太阳耀斑与太阳黑子参量的关系,本文采集了大规模的活动区黑子数据,统计其与耀斑发生的产率关系,应用得到的拟和公式对原始数据计算得到规范化后的数据集.在此基础上使用数据挖掘技术对黑子耀斑数据建立决策树模型和建立分类规则,具体描述了黑子数据和太阳耀斑之间的相关性.最后应用这两种技术对活动区未来48h是否爆发耀斑给出了预报,预报结果具有较高的准确率和较低的虚报率.
李蓉崔延美
关键词:太阳耀斑决策树
太阳光球磁场特征物理量在质子事件短期预报中的应用被引量:5
2010年
利用SOHO/MDI全日面纵向磁图,计算了三个描述太阳活动区磁场复杂性和非势性的特征物理量,即纵向磁场最大水平梯度|▽_hB_z|_m,强梯度中性线长度L,孤立奇点数目η.为检验太阳光球磁场特征在质子事件短期预报中是否有效,采用BP神经网络方法,建立了基于这三个磁场特征物理量简单的太阳质子事件短期(24 h)预报模型.模型在对2002年和2003年连续两年的样本检测中,有很高的准确率(2002年和2003年分别为90%,87.54%)和较高的质子事件报准率(2002年和2003年分别为60%,75%),从而为光球磁场特征物理量作为质子事件预报的有效因子提供了依据.
崔延美刘四清王华宁
关键词:太阳质子事件BP神经网络
应用机器学习方法的太阳质子事件短期预报模型被引量:6
2010年
本文选取三个描述太阳活动区磁场复杂性和非势性的特征物理量纵向磁场最大水平梯度|-hBz|m,强梯度中性线长度L,孤立奇点数目η.对这三个参量统计计算后结果作为预报因子,应用支持向量机作为预报方法建立一个基于磁场特征物理量的太阳质子事件短期预报模型,该模型可以预报活动区未来24小时是否爆发太阳质子事件.2002和2003年连续两年的样本检测并和基于传统预报因子的模型进行了比对,结果显示预报模型具有较高的准确率和较低的虚报率,从而验证了太阳光球磁场参量作为太阳质子事件预报因子的有效性.
李蓉崔延美
关键词:支持向量机
The relationships of solar flares with both sunspot and geomagnetic activity被引量:1
2012年
The relationships between solar flare parameters (total importance, time duration, flare index, and flux) and sunspot activity (R z ) as well as those between geomagnetic activity (aa index) and the flare parameters can be well described by an integral response model with the response time scales of about 8 and 13 months, respectively. Compared with linear relationships, the correlation coefficients of the flare parameters with R z , of aa with the flare parameters, and of aa with R z based on this model have increased about 6%, 17%, and 47% on average, respectively. The time delays between the flare parameters with respect to R z , aa to the flare parameters, and aa to R z at their peaks in a solar cycle can be predicted in part by this model (82%, 47%, and 78%, respectively). These results may be further improved when using a cosine filter with a wider window. It implies that solar flares are related to the accumulation of solar magnetic energy in the past through a time decay factor. The above results may help us to understand the mechanism of solar flares and to improve the prediction of the solar flares.
Zhan-Le DuHua-Ning Wang
结合光球磁场特征物理量的质子事件短期预报被引量:4
2011年
利用描述太阳活动区光球磁场复杂性和非势性特征的三个物理量(纵向磁场最大水平梯度|▽_hB_z|_m,强梯度中性线长度L,孤立奇点数目η)建立了质子事件短期预报模型,验证了磁场特征物理量对质子事件短期预报的有效性.目前已建立或使用的太阳质子事件短期预报模型中仍然没有正式将磁场特征物理量作为预报因子.由于太阳质子事件是小概率事件,其物理产生机制尚不完全清楚,这些预报模型往往存在虚报率偏高或报准率偏低的问题.本文试图将原有质子事件模型所用的传统因子与磁场特征物理量结合起来,利用神经网络方法建立一个更为有效的质子事件短期预报模型.利用1997-2001年的训练数据集1871个样本建立了输入层为传统预报因子的模型A以及输入层为传统预报因子和磁场特征物理量的模型B.通过对2002 2003年973个样本的测试数据集进行模拟预报发现,模型A与B在具有相同质子事件报准率的情况下,模型B的虚报率明显降低.这进一步验证了磁场特征物理量在质子事件短期预报中的作用,进而可以加强对太阳质子事件的实际预报能力.
崔延美李蓉刘四清
关键词:太阳质子事件BP神经网络
A method of magnetosonic characteristics to correct the "rarefaction shocks" problem arising in ZEUS
2012年
ZEUS is a magnetohydrodynamics simulation code widely used in astrophysical research.However,it was recently found that the code may produce artificial shocks in the rarefaction region in some numerical tests since it is not upwinded in fast and slow waves.We propose a method of magnetosonic characteristics to evolve compressional waves.The tests indicate that this method cures the "rarefaction shocks" problem to a large extent and it also greatly reduces some post shock oscillations.
ZHU XiaoShuaiWANG HuaNingFAN YuLiangDU ZhanLeHE Han
关键词:MAGNETOHYDRODYNAMICSNUMERICAL
共1页<1>
聚类工具0