A 3-craft formation configuration is proposed to perform the digital elevation model (DEM) for the distributed spacebome interferometric synthetic aperture radar (InSAR), and it is optimized by the modified ant colony algorithm to have the best compatibility with J2 invariant orbits created by differential correction algorithm. The configuration has succeeded in assigning the across-track baseline to vary periodically and with its mean value equal to the optimal baseline determined by the relative height measurement accuracy. The required relationship between crafts' magnitudes and phases is formulated for the general case of interferometry measure from non-orthographic and non-lateral view. The J2 invariant configurations created by differential correction algorithm are employed to investigate their compatibility with the required configuration. The colony algorithm is applied to search the optimal configuration holding the near-constant across-track baseline under the J2 perturbation, and the absolute height measurement accuracy is preferable as expected.
A strategy for spacecraft autonomous rendezvous on an elliptical orbit in situation of no orbit information is developed. Lawden equation is used to describe relative motion of two spacecraft. Then an adaptive gain factor is introduced, and an adaptive control law for auton- omous rendezvous on the elliptical orbit is designed using Lyapunov approach. The relative motion is proved to be ultimately bounded under this control law, and the final relative position error can achieve the expected magnitude. Simulation results indicate that the adaptive control law can realize autonomous rendezvous on the elliptical orbit with relative state information only.
Shan Lu Shijie Xu School of Astronautics, Beihang University,100191 Beijing, China