An asymptotic rejection algorithm is proposed for a class of nonlinear systems that have not only additive nonlinear uncertainties but also unknown disturbances. The disturbances are generated from an unknown exosystem, and are assumed to be sinusoidal disturbances with unknown amplitude and frequency. By using the technique of backstepping and adaptive control, a nonlinear state feedback controller is designed. Under the proposed controller, the system's state variables asymptotically converge to zero, and the disturbances are rejected completely. The approach used is an integration of the robust stabilization technique, adaptive technique, and backstepping technique.
In recent years, the chaos based cryptographic algorithms have suggested some new and efficient ways to develop secure image encryption techniques, but the drawbacks of small key space and weak security in one-dimensional chaotic cryptosystems are obvious. In this paper, permutation and sub- stitution methods are incorporated to present a stronger image encryption algorithm. Spatial chaotic maps are used to realize the position permutation, and to confuse the relationship between the ci- pher-image and the plain-image. The experimental results demonstrate that the suggested encryption scheme of image has the advantages of large key space and high security; moreover, the distribution of grey values of the encrypted image has a random-like behavior.