The 4f-5d transitions of Er3+ ions doped in crystals were widely studi ed due to their potential applications in quantum cutting phosphors and VUV lase rs,etc.The theory to do the calculations of 4f-5d transitions and various rela ted aspects,such as the ways to determining various parameters,were summarized .The impacts of various interactions on the spectra were also demonstrated clea rly with Er3+ ions in crystals CaF2 and LiYF4.Predicted results were compared w ith measured spectra.
Ce3+,Eu3+ and Tb3+ singly doped and Ce3+/Eu3+ and Ce3+/Tb3+ co-doped zinc phosphate glasses were prepared by sintering P2O5,ZnO,Ce2(C2O4)3·10H2O and Eu2O3/Tb4O7 mixtures at 1200 °C in the air for 2 h and then annealing at 450 °C for 10 h.The obtained glasses were homogeneous and transparent.The glasses without Ce3+ were colorless and those with Ce3+ showed slightly yellow.The singly doped glasses showed strong emissions and excitations from doped trivalent rare earth ions.Strong energy transfer from Ce3+ to...
Lutetium oxide nanocrystals codoped with Tm3+ and Yb3+ were synthesized by the reverse-like co-precipitation method, using ammonium hydrogen carbonate as precipitant. Effects of the Tm3+, Yb3+ molar fractions and calcination temperature on the structural and upconversion luminescent properties of the Lu2O3 nanocrystals were investigated. The XRD results show that all the prepared nanocrystals can be readily indexed to pure cubic phase of Lu2O3 and indicate good crystallinity. The experimental results show that concentration quenching occurs when the mole fraction of Tm3+ is above 0.2%. The optimal Tm3+ and Yb3+ doped molar fractions are 0.2% and 2%, respectively. The strong blue (490 nm) and the weak red (653 nm) emissions from the prepared nanocrystals were observed under 980 nm laser excitation, and attributed to the 1G4→3H6 and IG4→3F4 transitions of Tm3+, respectively. Power-dependent study reveals that the 1G4 levels of Tm3+ can be populated by three-step energy transfer process. The upconversion emission intensities of 490 nm and 653 nm increase gradually with the increase of calcination temperature. The enhancement of the upconversion luminescence is suggested to be the consequence of reducing number of OH- groups and the enlarged nanoerystal size.
In order to sensitize the luminescence of Eu3+ ions in heavy metal glass,zinc lead borate glass samples containing various concentrations of Eu3+ and Tb3+ ions were prepared to study the Tb3+ to Eu3+ non-radiative energy transfer phenomena.Energy level structures of Tb3+ and Eu3+ ions were plotted to show the excitation and energy transfer routes.Efficient energy transfer from Tb3+ to Eu3+ was observed and studied qualitatively in terms of doping concentrations.The sensitization turned out to be less effective than expected.Further studies to characterize the oxidation of Tb3+ into tetravalent state and to examine the mechanism of energy transfer are proposed.
Li Li~(1,2),Wei Xiantao~1,Chen Yonghu~1,Guo Changxin~1,Yin Min~(1*) (1.Department of Physics,University of Science and Technology of China,Hefei 230026, P R China) (2.College of Mathematics and Physics,Chongqing University of Posts and Telecommunications, Chongqing 400065,P R China)