您的位置: 专家智库 > >

国家自然科学基金(s10901013)

作品数:2 被引量:3H指数:1
发文基金:北京市自然科学基金国家自然科学基金教育部留学回国人员科研启动基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学
  • 1篇自动化与计算...

主题

  • 1篇OBLIQU...
  • 1篇PERIOD...
  • 1篇RESULT...
  • 1篇SETS
  • 1篇SUBSPA...
  • 1篇SUBSPA...
  • 1篇DENSIT...
  • 1篇GABOR
  • 1篇RATION...
  • 1篇MULTI-...
  • 1篇DUALS
  • 1篇CASE

传媒

  • 1篇Acta M...
  • 1篇Scienc...

年份

  • 1篇2013
  • 1篇2011
2 条 记 录,以下是 1-2
排序方式:
Multi-window Gabor frames and oblique Gabor duals on discrete periodic sets被引量:3
2011年
Given L, N, M ∈ N and an NZ-periodic set S in Z, let l2(S) be the closed subspace of l2(Z) consisting of sequences vanishing outside S. For f = { fl : 0≤l≤L-1 }l2(Z), we denote by G(f, N, M) the Gabor system generated by f, and by L(f, N, M) the closed linear subspace generated by G(f, N, M). This paper addresses density results, frame conditions for a Gabor system G(g, N, M) in l2(S), and Gabor duals of the form G(a, N, M) in some L(h, N, M) for a frame G(g, N, M) in l2(S) (so-called oblique duals). We obtain a density theorem for a Gabor system G(g, N, M) in l2(S), and show that such condition is suficient for theexistence of g={XE1:0≤l≤L-1} with G(g,N,m) We characterize g with G(g,N,m) being respectively a frame for L(g,N,m) being a tight frame for l2(S).and G(h, N, M ) in L(h, N, M ), we establish a criterion for the existence of an oblique Gabor dual of g in L(h, N, M), study the uniqueness of oblique Gabor dual, and derive an explicit expression of a class of oblique Gabor duals (among which the one with the smallest norm is obtained). Some examples are also provided.
LI YunZhangLIAN QiaoFang
Density Results for Subspace Multiwindow Gabor Systems in the Rational Case
2013年
Let S be a periodic set in R and L2(S) be a subspace of L2(R). This paper investigates the density problem for multiwindow Gabor systems in L2(S) for the case that the product of time- frequency shift parameters is a rational number. We derive the density conditions for a multiwindow Gabor system to be complete (a frame) in L2(S). Under such conditions, we construct a multiwindow tight Gabor frame for L2 (S) with window functions being characteristic functions. We also provide a characterization of a multiwindow Gabor frame to be a Riesz basis for L2(S), and obtain the density condition for a multiwindow Gabor Riesz basis for L2 (S).
Qiao Fang LIANHai Li MA
关键词:SUBSPACES
共1页<1>
聚类工具0