A new consistency control method for jet dispensing is proposed. First, the working parameters, namely, viscosity, supply pressure and supply time, are experimentally investigated. Then, the glue viscosity is approximated by a polynomial model using the least square method. Based on this model and temperatme control implemented using the Dahlin principle, the viscosity of the glue can be maintained at a constant value. Then, the viscosity model of the glue is applied to deriving the droplet mass as the nominal model of the temperature controller. The robustness of the temperature controller is analyzed by applying the small gain theory. The glue supply pressure controller is designed using the consistency control strategy, and the robustness is analyzed. Finall), simulations and experiments are conducted using a jet dispensing control system. The results show that the proposed control strategy can significantly improve the droplet consistency.
High-speed and precision positioning are fundamental requirements for high-acceleration low-load mechanisms in integrated circuit (IC) packaging equipment. In this paper, we derive the transient nonlinear dynamicresponse equations of high-acceleration mechanisms, which reveal that stiffness, frequency, damping, and driving frequency are the primary factors. Therefore, we propose a new structural optimization and velocity-planning method for the precision positioning of a high-acceleration mechanism based on optimal spatial and temporal distribution of inertial energy. For structural optimization, we first reviewed the commonly flexible multibody dynamic optimization using equivalent static loads method (ESLM), and then we selected the modified ESLM for optimal spatial distribution of inertial energy; hence, not only the stiffness but also the inertia and frequency of the real modal shapes are considered. For velocity planning, we developed a new velocity-planning method based on nonlinear dynamic-response optimization with varying motion conditions. Our method was verified on a high-acceleration die bonder. The amplitude of residual vibration could be decreased by more than 20% via structural optimization and the positioning time could be reduced by more than 40% via asymmetric variable velocity planning. This method provides an effective theoretical support for the precision positioning of high-acceleration low-load mechanisms.