Single barrier magnetic-tunnel-junctions (MTJs) with the layer structure of Ta(5)/Cu(30)/Ta(5)/Ni79Fe21(5)/Ir22 Mn78(12)/Co60Fe20B20(4)/Al(0.8)-oxide/Co60Fe20B20(4)/Cu(30)/Ta(5) [thickness unit: nm] using the amorphous Co60Fe20B20 alloy as free and pinned layers were micro-fabricated. The experimental investigations showed that the tunnel magnetoresistance (TMR) ratio and the resistance decrease with increasing dc bias voltage from 0 to 500 mV or with increasing temperature from 4.2 K to RT. A high TMR ratio of 86.2% at 4.2 K, which corresponds to the high spin polarization of Co60Fe20B20, 55%, was observed in the MTJs after annealing at 270℃ for 1 h. High TMR ratio of 53.1%, low junction resistance-area product RS of 3.56 kΩμm2, small coercivity HC of ≤4 Oe, and relatively large bias-voltage-at-half-maximum TMR with the value V1/2 of greater than 570 mV at RT have been achieved in such Co-Fe-B MTJs.
A new method of nanocontact fabrication for Adreev reflection measurement based on the nanopore method using a SiN membrane with focused ion beam technique is presented. With this method, controllable, clean,tensionless nano-contacts for spin polarization probing can be obtained. Measurements of the fabricated samples show complicated spectral structures with a zero bias anomaly and dip structures from quasipartical interactions. A control sample of Co40Fe40B20 is measured with Nb tip method. None of the measured spectra can be explained satisfactorily by present theory. Further analysis of the contact interface and a more complete theory are needed to extract a reliable spin polarization message with the point contact Andreev reflection method.
王天兴魏红祥任聪韩秀峰Clifford ELangford R MBari M ACoey J M D