We give a necessary and sufficient condition for the nilpotent operators to be similiar to irreducible operators, and give an answer to D.A.Herrero Conjectures for nilpotent operators.
In this paper, we are concerned with the classification of operators on complex separable Hilbert spaces, in the unitary equivalence sense and the similarity sense, respectively. We show that two strongly irreducible operators A and B are unitary equivalent if and only if W*(A+B)′≈M2(C), and two operators A and B in B1(Ω) are similar if and only if A′(AGB)/J≈M2(C). Moreover, we obtain V(H^∞(Ω,μ)≈N and Ko(H^∞(Ω,μ)≈Z by the technique of complex geometry, where Ω is a bounded connected open set in C, and μ is a completely non-reducing measure on Ω.