The deposition of particles in turbulent pipe flow was investigated in terms of two mechanisms, turbulent and thermophoretic. A general equation incorporating these two mechanisms was formulated to calculate the deposition efficiency of aerosol particles in turbulent pipe flow together with thermophoretic deposition. The validity of the equation was confirmed by good agreement between calculated and measured results.
A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order lognormal distributions (ZOLD) were used in the analysis of experimental distribution phe-nomena at different residence times during soot formation in the flame. Rayleigh抯 theory and Mie抯 scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot charac-teristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density meas-urements were carried out to determine density variations at different stages of growth. The measured results show that for long residence times the soot clearly crystallizes with higher density (up to 1.8 g.cm-3). The increases of soot volu-metric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.
A numerical simulation model is developed for a laminar hydrogen/air diffusion flame. Nineteen species and twenty chemical reactions are considered. The chemical kinetics package (CHEMKIN) subroutines are employed to calculate species thermodynamic properties and chemical reaction rate constants. The flow field is calculated by simultaneously solving a continuity equation, an axial momentum equation and an energy equation in a cylindrical coordinate system. Thermal diffusion and Brownian diffusion are considered in the radial direction while they are neglected in the axial direction. The results suggest that the main flame is buoyancy-controlled.