With the high energy and luminosity, the planned ILC has the considerable capability to probe the new heavy particles predicted by the new physics models. In this paper, we study the potential to discover the lightest new gauge boson BH of the Littlest Higgs model via the processes e^+e^- →γ(Z)BH at the ILC. The results show that the production rates of these two processes are large enough to detect BH in a wide range of the parameter spaces, specially for the process e^+e^- →γ TBH. Furthermore, there exist some decay modes for BH which can provide the typical signal and clean backgrounds. Therefore, the new gauge boson BH should be observable via these production processes with the running of the ILC if it exist.
In the framework of R-parity violating supersymmetry, we investigate the time dependent CP asymmetry SφKs anomaly of B→φKs decay. When the values of the weak phase φ in the R-parity violating coupling fall into certain parameter spaces (246°〈 φ 〈 263°) we find that this anomaly can be easily explained; at the same time, the branching ratio of B→φKs decay can also be in agreement with experimental measurements.
The lightest new gauge boson BH with mass of hundreds GeV is predicted in the littlest Higgs model. BH should be accessible in the planned ILC and the observation of such particle can strongly support the littlest Higgs model. The realization of 7Y and e^-γ collisions would open a wider window to probe BH. In this paper, we study the new gauge boson BH production processes e^-γ→e^-BH and e^-γ→e^-BH at the ILC. Our results show that the production cross section of the process e^-γ→e^-BH is less than 0.1 fb in most parameter spaces allowed by the electroweak precision data while the cross section of the process e^-γ→e^-BH can be over one fb in the favorable parameter spaces. With the high luminosity, the enough typical signals could be produced via e^-γ→e^-BH. Because the final electron and photon beams can be easily identified and the signal can be easily distinguished from the backgrounds produced by Z and H decaying, e^-γ→e^-BH is a promising process to probe BH.