This paper studies convergence analysis of an adaptive finite element algorithm for numerical estimation of some unknown distributed flux in a stationary heat conduction system,namely recovering the unknown Neumann data on interior inaccessible boundary using Dirichlet measurement data on outer accessible boundary.Besides global upper and lower bounds established in[23],a posteriori local upper bounds and quasi-orthogonality results concerning the discretization errors of the state and adjoint variables are derived.Convergence and quasi-optimality of the proposed adaptive algorithm are rigorously proved.Numerical results are presented to illustrate the quasi-optimality of the proposed adaptive method.
We develop two parallel algorithms progressively based on C++ to compute a triangle operator problem, which plays an important role in the study of Schubert calculus. We also analyse the computational complexity of each algorithm by using combinatorial quantities, such as the Catalan number, the Motzkin number, and the central binomial coefficients. The accuracy and efficiency of our algorithms have been justified by numerical experiments.