您的位置: 专家智库 > >

国家自然科学基金(60573167)

作品数:2 被引量:4H指数:1
相关作者:崔一博谭啸宇崔鹏杨士强孙立峰更多>>
相关机构:清华大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划国家高技术研究发展计划更多>>
相关领域:电子电信自动化与计算机技术更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 1篇电子电信
  • 1篇自动化与计算...

主题

  • 1篇行人跟踪
  • 1篇视频
  • 1篇视频监控
  • 1篇消失点
  • 1篇PARTIC...
  • 1篇RANSAC
  • 1篇MIXTUR...
  • 1篇TRACKE...
  • 1篇ADAPTI...

机构

  • 1篇清华大学

作者

  • 1篇孙立峰
  • 1篇杨士强
  • 1篇崔鹏
  • 1篇谭啸宇
  • 1篇崔一博

传媒

  • 1篇清华大学学报...
  • 1篇Scienc...

年份

  • 2篇2009
2 条 记 录,以下是 1-2
排序方式:
Adaptive mixture observation models for multiple object tracking被引量:3
2009年
Multiple object tracking (MOT) poses many difficulties to conventional well-studied single object tracking (SOT) algorithms, such as severe expansion of configuration space, high complexity of motion conditions, and visual ambiguities among nearby targets, among which the visual ambiguity problem is the central challenge. In this paper, we address this problem by embedding adaptive mixture observation models (AMOM) into a mixture tracker which is implemented in Particle Filter framework. In AMOM, the extracted multiple features for appearance description are combined according to their discriminative power between ambiguity prone objects, where the discriminability of features are evaluated by online entropy-based feature selection techniques. The induction of AMOM can help to surmount the incapability of conventional mixture tracker in handling object occlusions, and meanwhile retain its merits of flexibility and high efficiency. The final experiments show significant improvement in MOT scenarios compared with other methods.
CUI Peng SUN LiFeng YANG ShiQiang
视频监控中基于行人跟踪的摄像机自动标定被引量:1
2009年
为了能够用更简易的手段解决视频监控系统中的摄像机参数获取问题,提出了一种基于场景中行人位置信息的摄像机自标定方法。先对由不同位置的行人轮廓中提取出的头脚点位置信息进行筛选,再通过极大似然估计求解出消失点与水平消失线,并根据消失点与消失线信息计算出摄像机的内外参数和投影矩阵。最后根据由重投影统计计算的误差评价系数,采纳RAN SAC方法选取最优结果,实现了对参数的优化。实验表明:该方法有效降低了行人信息获取中的观测噪声和过程噪声对摄像机标定的影响,能够得到较理想的摄像机自标定效果。
崔一博谭啸宇崔鹏孙立峰杨士强
关键词:视频监控消失点RANSAC
共1页<1>
聚类工具0