Distribution of vegetation is closely coupled with climate; the climate controls distribution of vegetation and the vegetation type reflects regional climates. To reveal vegetation_climate relationships is the foundation for understanding the vegetation distribution and theoretically serving vegetation regionalization. Vegetation regionalization is a theoretical integration of vegetation studies and provides a base for physiogeographical regionalization as well as agriculture and forestry regionalization. Based on a brief historical overview on studies of vegetation_climate relationships and vegetation regionalization conducted in China, we review the principles, bases and major schemes of previous vegetation regionalization and discuss on several contentious boundaries of vegetation zones in the present paper. We proposed that, under the circumstances that the primary vegetation has been destroyed in most parts of China, the division of vegetation zones/regions should be based on the distribution of primary and its secondary vegetation types and climatic indices that delimit distribution of the vegetation types. This not only reveals the closed relationship between vegetation and climate, but also is feasible practically. Although there still are divergence of views on the name and their boundaries of the several vegetation zones, it is commonly accepted that there are eight major vegetation regions in China, i.e. cold temperate needleleaf forest region, temperate needleleaf and broadleaf mixed forest region, warm temperate deciduous broadleaf forest region, subtropical evergreen broadleaf forest region, tropical monsoon forest and rain forest region, temperate steppe region, temperate desert region, and Qinghai_Xizang (Tibetan) Plateau high_cold vegetation region. Analyzing characteristics of vegetation and climate of major vegetation boundaries, we suggested that: 1) Qinling Mountain_Huaihe River line is an important arid/humid climatic, but not a thermal climatic boundary, and thus can not also be regarde
Land surface process is of great importance in global climate change, moisture and heat exchange in the interface of the earth and atmosphere, human impacts on the environment and eco- system, etc. Soil freeze/thaw plays an important role in cold land surface processes. In this work the diurnal freeze/thaw effects on energy partition in the context of GAME/Tibet are studied. A sophisti- cated land surface model is developed, the particular aspect of which is its physical consideration of soil freeze/thaw and vapor flux. The simultaneous water and heat transfer soil sub-model not only reflects the water flow from unfrozen zone to frozen fringe in freezing/thawing soil, but also demon- strates the change of moisture and temperature field induced by vapor flux from high temperature zone to low temperature zone, which makes the model applicable for various circumstances. The modified Picard numerical method is employed to help with the water balance and convergence of the numerical scheme. Finally, the model is applied to analyze the diurnal energy and water cycle char- acteristics over the Tibetan Plateau using the Game/Tibet datasets observed in May and July of 1998. Heat and energy transfer simulation shows that: (i) There exists a negative feedback mechanism between soil freeze/thaw and soil temperature/ground heat flux; (ii) during freezing period all three heat fluxes do not vary apparently, in spite of the fact that the negative soil temperature is higher than that not considering soil freeze; (iii) during thawing period, ground heat flux increases, and sensible heat flux decreases, but latent heat flux does not change much; and (iv) during freezing period, soil temperature decreases, though ground heat flux increases.
HU Heping1, YE Baisheng2, ZHOU Yuhua3 & TIAN Fuqiang1 1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China