Displacement damage dose (Dd) approach was applied to analyze the electron irradiation-induced degradation of GaInP/ GaAs/Ge space solar cells by effective 1 MeV electron Dd, the electron irradiation-induced maximum power Pmax degradation of the solar cells is plotted as a function of the effective 1 MeV electron Dd , and the result shows that all the measured electron data can be represented by a single curve using displacement damage dose. Obviously, the displacement damage dose approach simplifies the description of electron irradiation-induced degradation of GaInP/GaAs/Ge space solar cells, and also offers an alternative for handling the case where degradation occurs as a result of combined electron and proton irradiation.
GaInP/GaAs/Ge triple-junction solar cells were irradiated with 50 keV and 100 keV protons at fluences of 5 × 10^10 cm^-2, 1 × 10^11 cm^-2,1 × 10^12 cm^-2, and 1 × 10^13 cm^-2. Their performance degradation is analyzed using current-voltage characteristics and spectral response measurements, and then the changes in Isc, Voc, Pmax and the spectral response of the cells are observed as functions of proton irradiation fluence and energy. The results show that the spectral response of the top cell degrades more significantly than that of the middle cell, and 100 keV proton-induced degradation rates of Isc, Voc and Pmax are larger compared with 50 keV proton irradiation.