In this study NieN i3 Si eutectic in situ composites are obtained by Bridgman directional solidification technique when the solidification rate varies from 6.0 mm/s to 40.0 mm/s. At the low solidification rates the lamellar spacing is decreased with increasing the solidification rate. When the solidification rate is higher than 25 mm/s, the lamellar spacing tends to be increased, because the higher undercooling makes the mass transport less effective. The adjustments of lamellar spacing are also observed during the directional solidification process, which is consistent with the minimum undercooling criterion. Moreover, the transitions from planar interface to cellular, then to dendritic interface, and finally to cellular interface morphologies with increasing velocity are observed by sudden quenching when the crystal growth tends to be stable.
The Si-TaSi2 eutectic in situ composite, which has highly-aligned and uniformly-distributed TaSi2 fibers in the Si matrix, can be obtained when the solidification rate changes from 0.3 to 9.0 mm/min. It is very interesting that one or two TaSi2 fibers are curved when the solidification rate reaches 6.0 mm/min, although it is very brittle in general. The formation mechanism of the curved fiber is discussed and mechanical properties of the TaSi2 fibers are examined by nanoindentation. It is found that the hardness and the elastic modulus of the bended TaSi2 fiber are much higher than that of the straight TaSi2 fiber. Moreover, the reasons why the mechanical properties of the straight TaSi2 fiber are different from that of the curved TaSi2 fiber are discussed. This can be ascribed to internal stress which results from mismatch of the thermal expansion coefficients of the two phases and different crystallographic orientations.