A 5.3 m lake core was drilled in Baahar Nuur Lake in the Ordos Plateau, and measurements of meangrain size, organic δ 13C (δ 13Corg), organic carbon content (TOC), C/N, carbonate content, carbonate δ 13C(δ 13Ccar) and δ 18O (δ 18Ocar) were conducted for retrieving the Holocene chronosequence of climaticchanges based on 15 AMS 14C dates. The record documented four major stages of climate change inthe Ordos Plateau: (IV) a cold and dry condition before ~7.65 14C ka BP; (III) a warm and humid stagebetween ~7.65 and ~5.40 ka BP; (II) a generally drier and cooler climate since ~5.40 ka BP with twohumid events occurring from ~4.70 to ~4.60 ka BP and from ~4.20 to ~3.70 ka BP, and (I) a dry climatecharacterized by complete desiccation of the lake after 3.70 ka BP. Stage III can be further divided intothree sub-stages: (IIIa) a warm and humid episode from ~7.65 to ~6.70 ka BP, (IIIb) a warm and relativelydry episode from ~6.70 to ~6.20 ka BP, and (IIIc) the magthermal and maghumid episode of the Holo-cene from ~6.20 to ~5.40 ka BP.
With the support of 18 AMS-14C data, a high-resolution pollen record from the Suancigou section at Jingning, Gansu Province was established. Our results showed that the vegetation ex-perienced a series of changes characterized by the alternative growth and decline of forest and steppe components during the period from 44.2 to 11 ka B.P. in the Jingning area. Over the period of 44―29 ka B.P. (MIS3), coniferous forests were flourishing, indicating a humid climate with the tem-perature being lower than that of the present. Since 23 ka B.P., the vegetation was dominated by steppe-desert steppe under a cold and dry condition, and entered the Last Glacial Maximum domi-nated by desert steppe. Several periods of the marked decrease in the arborous pollen content in Suancigou well corresponded to the North Atlantic Heinrich events, especially to Heinrich event 3, further supporting that the Heinrich events were well reflected by the pollen record in the Loess Pla-teau as well.
LI Chunhai12, TANG Lingyu1, FENG Zhaodong3,4, ZHANG Hucai2, WANG Weiguo3 & AN Chenbang3 1. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
Field works show that the wetland/swamp layers were distributed ubiquitously in the western part of the Chinese Loess Plateau. Universality of the wetland/swampy layer and the consistency of the age reveal that the layer was developed under the humid climatic condition. Dated between 9 and 3.8 kaBP, the wetland/swampy layer is full of aquatic mollusks and has the highest tree and shrub pollen, indicating a humid mid-Holocene. Variations of grain size suggest that winter monsoon weakened during 9—3.8 kaBP while climate change to humid and vegetation cover increased from 9 kaBP onward. After 5.9 kaBP, the humidity declined gradually. In 3.8 kaBP, summer monsoon sharply retreated, and the climate changed to dry.
Whether millennial-to centennial-scale climate variations throughout the Holocene convey universal climate change is still widely debated.In this study,we aimed to obtain a set of high-resolution multi-proxy data(1343 particle size samples,893 total organic carbon samples,and 711 pollen samples)from an alluvial-lacustrine-aeolian sequence based on an improved age-depth model in the northwestern margin of the East Asian monsoon region to explore the dynamics of climate changes over the past 30 ka.Results revealed that the sequence not only documented the major climate events that corresponded well with those reported from the North Atlantic regions but also revealed many marked and high-frequency oscillations at the millennial-and centennial-scale.Specifically,the late stage of the last glacial lasting from 30.1 to 18.1 cal.ka BP was a dry and cold period.The deglacial(18.1-11.5 cal.ka BP)was a wetting(probably also warming)period,and three cold and dry excursions were found in the wetting trend,i.e.,the Oldest Dryas(18.1-15.8 cal.ka BP),the Older Dryas(14.6-13.7 cal.ka BP),and the Younger Dryas(12.5-11.5 cal.ka BP).The Holocene can be divided into three portions:the warmest and wettest early portion from 11.5 to 6.7 cal.ka BP,the dramatically cold and dry middle portion from 6.7 to 3.0 cal.ka BP,and the coldest and driest late portion since 3.0 cal.ka BP.Wavelet analysis results on the total pollen concentration revealed five substantially periodicities:c.5500,2200,900,380,and 210 a.With the exception of the c.5500 a quasi-cycle that was causally associated with the Atlantic meridional overturning circulation,the other four quasi-cycles(i.e.,c.2200,900,380,and 210 a)were found to be indirectly causally associated with solar activities.This study provides considerable insight into the dynamic mechanism of the Asian climate on a long-time scale and future climatic change.