In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
In recent twenty years, much numerical simulation work has been done on the evolution of Qinghai-Xizang (Tibetan) plateau. In this paper some principal numerical models and results are reviewed and analyzed. The earlier plane stress or plane strain model has much discrepancy with the actual deformation of Qinghai-Xizang plateau, such as the thickening of Tibetan crust and the lateral extrusion of Tibet along strike-slip faults. The thin viscous sheet model and the thin-plate model may simulate the change of the crustal thickness and the deformation pro-duced by gravitational force. It is suitable for studying the large-scale and long-time deformation. The influence of faults on the deformation of Tibetan plateau should be further studied.
In the compilation of World Stress Map, 9% of data comes from overcoring and hydraulic fracturing measurement, 23% from borehole breaking off, 63% from earthquake focal mechanism, and 5% from young geological investigation (Zoback, et al, 1989).……
Based on data of principal stress orientation from focal mechanism and of geological features in China, we made pseudo-3D genetic algorithm finite element (GA-FEM) inversion to investigate the main forces acting on the Chinese continent and adjacent areas which form the Chinese tectonic stress field. The results confirm that plate boundary forces play the dominant role in forming the stress field in China, as noticed by many previous researchers. However, we also find that topographic spreading forces, as well as basal drag forces of the lower crust to the upper crust, make significant contribution to stresses in regional scale. Forces acting on the Chinese continent can be outlined as follows: the collision of the India plate to the NNE is the most important action, whereby forces oriented to the NW by the Philippine plate and forces oriented to the SWW by the Pacific plate are also important. Topographic spreading forces are not negligible at high topographic gradient zones, these forces are perpendicular to edges of the Tibetan Plateau and a topographic gradient belt running in the NNE direction across Eastern China. Basal drag forces applied by the ductile flow of the lower crust to the base of upper crust affect the regional stress field in the Tibetan Plateau remarkably, producing the clockwise rotation around the eastern Himalaya syntax.
ZHU ShouBiao1,2& SHI YaoLin3 1 Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China