A new class of three-variable orthogonal polynomials, defined as eigenfunctions of a second order PDE operator, is studied. These polynomials are orthogonal over a curved tetrahedron region, which can be seen as a mapping from a traditional tetrahedron, and can be taken as an extension of the 2-D Steiner domain. The polynomials can be viewed as Jacobi polynomials on such a domain. Three-term relations are derived explicitly. The number of the individual terms, involved in the recurrences relations, are shown to be independent on the total degree of the polynomials. The numbers now are determined to be five and seven, with respect to two conjugate variables z, $ \bar z $ and a real variable r, respectively. Three examples are discussed in details, which can be regarded as the analogues of the Chebyshev polynomials of the first and the second kinds, and Legendre polynomials.
SUN JiaChang State Key Laboratory of Computer Science,R&D Center for Parallel Computing,Institute of Software,Chinese Academy of Sciences,Beijing 100080,China
In this paper we propose the well-known Fourier method on some non-tensor product domains in Rd, including simplex and so-called super-simplex which consists of (d + 1)! simplices. As two examples, in 2-D and 3-D case a super-simplex is shown as a parallel hexagon and a parallel quadrilateral dodecahedron, respectively. We have extended most of concepts and results of the traditional Fourier methods on multivariate cases, such as Fourier basis system, Fourier series, discrete Fourier transform (DFT) and its fast algorithm (FFT) on the super-simplex, as well as generalized sine and cosine transforms (DST, DCT) and related fast algorithms over a simplex. The relationship between the basic orthogonal system and eigen-functions of a LaDlacian-like operator over these domains is explored.