The epitaxial growths of GaN films and GaN-based LEDs on various patterned sapphire substrates (PSSes) with different values of fill factor (f) and slanted angle (0) are investigated in detail. The threading dislocation (TD) density is lower in the film grown on the PSS with a smaller fill factor, resulting in a higher internal quantum efficiency (IQE). Also the ability of the LED to withstand the electrostatic discharge (ESD) increases as the fill factor decreases. The illumination output power of the LED is affected by both 0 and f. It is found that the illumination output power of the LED grown on the PSS with a lower production of tan 0 and f is higher than that with a higher production of tan 0 and f.